Automated assembly of aircraft wings

Apr 30, 2014
The robot winds its way through the narrow openings inside the airfoil like a snake. Its articulated joints are so flexible that they can reach the furthermost regions of the workspace. Credit: Fraunhofer IWU

Even today, aircraft wings are still assembled manually; but this process could soon be automated thanks to a novel snake-like robot capable of tightening bolts in even the most difficult-to-access cavities of the wing structure.

The volume of air traffic has soared in the past few decades, and aircraft manufacturer Airbus expects to see this figure triple by 2030. On a single day, more than 1,300 take-offs and landings are handled by the flight tower at Frankfurt's international airport. This represents no less than 155,000 passengers who pass through this airport each day. To provide sufficient planes to cover this need for air transportation capacity, aircraft manufacturers will have to modernize their production processes.

Until now, aircraft assembly has involved a high proportion of manual processes, which limits production output. These processes must be automated to increase the rate of production. In certain cases this can be achieved easily, but wing assembly remains a major challenge. Why is this so? The main reason lies in the complicated internal structure of the wings, which consist of a series of hollow chambers. The only access to this space is through narrow hatches with a length of 45 centimeters and a width of 25 centimeters; this makes it extremely difficult for assembly workers to climb through these openings in order to fit the bolts that hold the parts together and seal the joints. This drilling and sealing operation has to be repeated around 3,000 times for each wingbox. This is time-consuming work that demands intensive physical effort that quickly leads to fatigue, not to mention the health risks resulting from the volatile organic compounds released by the sealing materials.

Slim, multi-jointed robot system for use in narrow spaces

Conventional industrial robots are too inflexible to pass through narrow openings. Their rigid arms are not capable of reaching the outermost regions of a workspace that extends up to five meters in length. What is needed is a slim with articulated arms. Researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz are currently working on an automation solution based on articulated . "The robot is equipped with articulated arms consisting of eight series-connected elements which allow them to be rotated or inclined within a very narrow radius in order to reach the furthest extremities of the wingbox cavities. That's why we often refer to the system as a ," says IWU project manager Marco Breitfeld.

The tool is attached to the first in the series of eight limbs, or can be replaced by an inspection camera if required. In total, the robot arm measures 2.5 meters in length and is capable of supporting tools weighing up to 15 kilograms in addition to its own weight.

The kinematics used to drive the robot are based on a sophisticated mechanism including an innovative gear system for which a patent application has been filed. Conventional motors are not an option for the individual sections of the robot arm, due to their compact design. Breitfeld's team has therefore integrated a very small motor in each of the eight sections of the robot arm, which together are capable of generating a very high torque of up to 500 Newton-meters. Used in conjunction with a cord-and-spindle drive system, each section of the robot arm can be moved independently and turned through an angle of up to 90 degrees. "The drive concept allows this solution to be used in any situation requiring the application of high forces and torque within a limited space," Breitfeld says. "There is a need for compact automation solutions of this type in aircraft manufacturing, automobile construction, and power plant design."

The next stage in the project involves installing the 60-kilogram robot on a mobile platform or rails, allowing it to travel along the length of the wingbox and penetrate each chamber. The mobile robot platform developed by the Fraunhofer Institute for Factory Operation and Automation IFF as part of the EU-funded VALERI project would be a suitable option. At present, the IWU researchers are testing the mechanical design and control functions. A demonstration model of the robot will be presented at the Automatica trade show in Munich from June 3 to 6 (in Halle B4, Booth 228). A full version of the system equipped with an eight-part articulated robotic arm is to be created by the end of 2014.

Explore further: AI expert calls on colleagues to take a stand on autonomous killer robots

Related Stories

Mobile robots support airplane manufacturers

Apr 02, 2014

In production facilities, robots, and people will soon be working side-by-side. A new mobile assistant is intended to support technicians in the airplane manufacturing industry when applying sealant, measuring, ...

Flying robots get off the ground

Jun 17, 2013

Attaching a platform to a high-rise building to evacuate people in an emergency, or creating a landing stage for an aircraft on uneven terrain - these are just two areas in which flying robots could have ...

Recommended for you

Cheetah robot lands the running jump (w/ Video)

7 hours ago

In a leap for robot development, the MIT researchers who built a robotic cheetah have now trained it to see and jump over hurdles as it runs—making this the first four-legged robot to run and jump over ...

Robot swarms use collective cognition to perform tasks

May 28, 2015

The COCORO project's robot swarms not only look like schools of fish, they behave like them too. The project developed autonomous robots that interact with each other and exchange information, resulting in ...

Job-sharing with nursing robot

May 27, 2015

Given the aging of the population and the low birthrate both in Japan and elsewhere, healthcare professionals are in short supply and unevenly distributed, giving rise to a need for alternatives to humans ...

Robots can recover from damage in minutes (w/ Video)

May 27, 2015

Robots will one day provide tremendous benefits to society, such as in search and rescue missions and putting out forest fires—but not until they can learn to keep working if they become damaged.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.