Agricultural research extends carbon capture depths 

Apr 21, 2014 by Aaron Fernandes
Scientists from across Australia assessed the potential for soil carbon sequestration in the nation’s agricultural zones.

A study of Western Australia's agricultural zones has shown deeper potential for soil carbon sequestration, in areas where the strategy has previously proven extremely difficult.

The Soil Carbon Research Program (SCaRP) brought scientists together from across Australia to assess the potential for in the nation's agricultural zones.

In WA, seven regions and more than 1000 sites were selected according to type, land use, and climate scenarios, with findings from the Kalgan region in the Great Southern recently published.

WA Department of Agriculture and Food Senior Scientist Frances Hoyle says the program, led by UWA Professor Daniel Murphy, measured the actual soil organic carbon (SOC) for the sites and then conducted modeling at selected sites to assess its further potential.

"The study area included 261 sites on the Albany sand plain, ranging from pasture systems with high levels of rainfall, to cropping systems with medium and low rainfall," she says.

"We requested 10 year management histories from all the sites, and included a range of land uses such as continuous cropping, mixed cropping, annual and perennial pastures."

Early analysis demonstrated up to 89 per cent of the variability in actual SOC stock measured in the region was explained by soil depth, rainfall, land use, and soil type, with average actual SOC stocks for land use (captured in) combinations ranging from 33 to 128t C/ha (0–30cm).

However, Dr Hoyle says researchers ultimately aimed to identify which land systems have the greatest potential for carbon storage.

"With the initial data set taken from depths of 0–30cm, we used models to determine what the attainable SOC levels could be," she says.

This (result) suggested greater capacity for increasing storage over the long term.

"However when breaking down each of the three 10cm increments, our findings suggested that the top 10cm of the profile was relatively saturated or quite full," she says.

"This means that at the soil surface (0–10cm), was already >95 per cent of its attainable capacity."

However, Dr Hoyle says in the subsoil below 10cm researchers demonstrated that depending on the specific land use, there could be an additional storage capacity of 5–45 per cent (7–27t C/ha).

"This has implications for management strategies to increase SOC sequestration in dryland agricultural systems, as current practices tend to concentrate organic matter near the soil surface," she says.

Dr Hoyle says that while the potential for additional storage is highlighted, measurable changes in SOC occur very slowly and require higher amounts of organic matter inputs, with greater potential for higher SOC in soils with increased clay content.

Explore further: Australian soil carbon map sets a baseline for future gains

More information: The complete study is available online: www.publish.csiro.au/view/jour… cfm?nid=84&f=SR12373

add to favorites email to friend print save as pdf

Related Stories

Digging deeper for soil carbon storage

Sep 10, 2013

Many surface soils in Western Australia are already storing as much carbon as they can, according to research at The University of Western Australia and in collaboration with the Department of Agriculture ...

Before selling carbon credits, read this

May 18, 2007

Storing carbon in agricultural soils presents an immediate option to reduce atmospheric carbon dioxide and slow global warming. Farmers who adopt practices that store carbon in soil may be able to "sell" the stored carbon ...

Recommended for you

Study shows no lead pollution in oilsands region

23 hours ago

New research from a world-renowned soil and water expert at the University of Alberta reveals that there's no atmospheric lead pollution in Alberta's oilsands region—a finding that contradicts current scientific ...

User comments : 0