Thermoelectric materials can be much more efficient

Mar 25, 2014 by Joost Bruysters
Credit: Eric Brinkhorst

Researchers from the University of Twente's MESA+ research institute have managed to significantly improve the efficiency of a thermoelectric material. Because of their unique qualities, these materials can convert waste heat into electricity. They may eventually be used to, for example, put the heat issued from a factory chimney or car exhaust-pipe to good use. The fundamental research, which has been published in the scientific journal Advanced Energy Materials, shows that the materials can still be much improved.

Thermoelectric , i.e. materials that are able to convert heat into electricity, have been around for a while. Because they are still not sufficiently efficient, they are currently mainly used in gadgets, such as boots that use to charge a phone. However, if heat could be more efficiently converted into electricity, this would open up possibilities for a wide range of practical applications. Think of materials that are able to convert the heat emitted from a car exhaust-pipe into electricity for an electric motor, factories that convert into electricity and pacemakers that are charged with the body of their carriers.

Doubling the capacity

Thermoelectric materials have unique qualities which are not very common in natural materials. For instance, their electrical conductivity should be as high as possible, whereas their thermal conductivity as low as possible. Researchers from the University of Twente's MESA+ research institute have managed to greatly improve the efficiency of thin films of the thermoelectric material NaXCoO2. They have managed to double the capacity of thin films of the material by adjusting the fabrication conditions. According to Dr Mark Huijben, one of the researchers involved, the research shows that further improvements can be made. "Although this concerns fundamental research, it goes to show that it is possible to greatly improve the efficiency of the materials by exercising greater control over the fabrication process. By selecting the right substrate and fabrication conditions, we are able to fine-tune the material to a high degree."

The researchers worked with thin films of the material of less than one hundred nanometres thick. Huijben: "The next step is to arrange thin layers of different materials on top of each other in order to create new and better qualities."

Explore further: Spintronic thermoelectric power generators: A step towards energy efficient electronic devices

More information: "Enhanced Thermoelectric Power Factor of NaxCoO2 Thin Films by Structural Engineering." Peter Brinks, Bouwe Kuiper, Eric Breckenfeld, Gertjan Koster, Lane W. Martin, Guus Rijnders and Mark Huijben. Advanced Energy Materials. Article first published online: 12 FEB 2014 | DOI: 10.1002/aenm.201301927

add to favorites email to friend print save as pdf

Related Stories

Electricity from waste heat with more efficient materials

Dec 05, 2013

Thermoelectric materials can convert waste heat directly into electricity. Tommi Tynell, M.Sc., who is a doctoral candidate at the Aalto University School of Chemical Technology, has developed hybrid thermoelectric materials ...

Recommended for you

Researchers use oxides to flip graphene conductivity

8 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

15 hours ago

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.