Research team devises a way to create pulses of gamma rays with precise shape and timing

Mar 17, 2014 by Bob Yirka report
Research team devises a way to create pulses of gamma rays with precise shape and timing
Experimental set-up for γ-photon waveform control. Credit: Nature (2014) doi:10.1038/nature13018

(Phys.org) —A team of researchers based at Texas A&M University with affiliations with several Russian Universities has come up with a way to create pulses of gamma rays that have precise shapes and timing, all from a single photon source. In their paper published in the journal Nature, the team describes how they used cobalt to produce coherent single photon pulses.

Gamma rays have quite a bit more energy than regular light, and their wavelength is a lot shorter too—both attributes that could make them an ideal candidate for better data communications and other physics applications. Unfortunately, they are not as easy to produce and harness as regular light. In this new effort, the researchers looked to radioactive Cobalt as a possible solution.

Normally, cobalt-57 releases pairs of photons one after the other as it decays to iron-57—the waveforms of the photons spread across time and exponentially decay. As part of their experiment, the researchers instead caused a to be absorbed into the nucleus of an iron atom using a sheet of steel foil, which also allowed for detection of the photon as it was later released. By vibrating the foil, the researchers found they were able to cause the photons to be absorbed at different distances from the source. This meant the reemergence of the photon as it was released could be caused to take different amounts of time to strike the detector. By changing the vibration frequency, the team found they were able to adjust the amount of time it would take the photon to strike the detector.

The result of the experiment was that the researchers discovered that they were able to use the vibrating motion of the foil to create a wave form as a series of fading, coherent pulses that were all evenly spaced apart. By adjusting the vibration characteristics, the researchers found they could fine tune the number, duration and shape of the pulses—they could even produce pairs if desired. Put another way, the researchers efforts have resulted in a method for both producing and harnessing the energy in .

Possible uses for such technology range from improving spectroscopy devices, to new quantum cryptography techniques to increased high-speed .

Explore further: Scientists demonstrate switching effects caused by single photons

More information: Coherent control of the waveforms of recoilless γ-ray photons, Nature (2014) DOI: 10.1038/nature13018

Abstract
The concepts and ideas of coherent, nonlinear and quantum optics have been extended to photon energies in the range of 10–100 kiloelectronvolts, corresponding to soft γ-ray radiation (the term used when the radiation is produced in nuclear transitions) or, equivalently, hard X-ray radiation (the term used when the radiation is produced by electron motion). The recent experimental achievements in this energy range include the demonstration of parametric down-conversion in the Langevin regime1, electromagnetically induced transparency in a cavity2, the collective Lamb shift3, vacuum-assisted generation of atomic coherences4 and single-photon revival in nuclear absorbing multilayer structures5. Also, realization of single-photon coherent storage6 and stimulated Raman adiabatic passage7 were recently proposed in this regime. More related work is discussed in a recent review8. However, the number of tools for the coherent manipulation of interactions between γ-ray photons and nuclear ensembles remains limited. Here we suggest and implement an efficient method to control the waveforms of γ-ray photons coherently. In particular, we demonstrate the conversion of individual recoilless γ-ray photons into a coherent, ultrashort pulse train and into a double pulse. Our method is based on the resonant interaction of γ-ray photons with an ensemble of nuclei with a resonant transition frequency that is periodically modulated in time. The frequency modulation, which is achieved by a uniform vibration of the resonant absorber, owing to the Doppler effect, renders resonant absorption and dispersion both time dependent, allowing us to shape the waveforms of the incident γ-ray photons. We expect that this technique will lead to advances in the emerging fields of coherent and quantum γ-ray photon optics, providing a basis for the realization of γ-ray-photon/nuclear-ensemble interfaces and quantum interference effects at nuclear γ-ray transitions.

add to favorites email to friend print save as pdf

Related Stories

Hi-fi single photons

Oct 04, 2012

Many quantum technologies—such as cryptography, quantum computing and quantum networks—hinge on the use of single photons. While she was at the Kastler Brossel Laboratory (affiliated with the Pierre and Marie Curie University, ...

Seeing a photon without absorbing it

Nov 14, 2013

Light is of fundamental importance. It allows us to see the world around us and record pictures of our environment. It enables communication over long distances through optical fibers. All current methods ...

Recommended for you

A transistor-like amplifier for single photons

11 hours ago

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

hemitite
5 / 5 (1) Mar 17, 2014
"Gamma rays have quite a bit more energy than regular light, and their wavelength is a lot shorter too—"

Gee wiz! What a cowinkedink!
hemitite
not rated yet Mar 17, 2014
Very interesting technique! I believe that this will be important.
ACW
3 / 5 (2) Mar 17, 2014
There is the reason why we have not found any alien civilizations yet, we just figured out how to communicate.

On the lighter side of amusement...