Team models photosynthesis and finds room for improvement

Mar 04, 2014 by Diana Yates

(Phys.org) —Teaching crop plants to concentrate carbon dioxide in their leaves could increase photosynthetic efficiency by 60 percent and yields by as much as 40 percent, researchers report in a new study.

The team used a computer model to simulate how adding genes from a type of known as cyanobacteria might influence photosynthetic efficiency in plants. Cyanobacteria contain small structures, called carboxysomes, which concentrate carbon dioxide at the site of .

"Photosynthesis is the most studied of all plant processes, so we really know this in great detail and can represent it well in silico," said University of Illinois plant biology professor Stephen Long, who led the study with postdoctoral researcher Justin McGrath. "We've modeled the whole system, and added all the components in a cyanobacterial system one at a time to our computer simulation to see if they give us an advantage."

The team found that some of the carboxysome genes hindered, while others greatly enhanced photosynthetic efficiency in such as soybean, rice and cassava. For example, adding a gene for a bicarbonate transporter, which carries across the carboxysome membrane, enhances photosynthesis by 6 percent, Long said.

"And if we put in about eight components of the carboxysome system, the model says that we could get a 60 percent increase in photosynthesis," he said.

The new findings appear in the journal Plant Physiology.

Modeling photosynthesis in crop plants has proven to be an efficient way to determine which kinds of genetic manipulations will be most fruitful, Long said. This prevents a lot of wasted time and money spent trying things in the laboratory that are doomed to fail.

The work is very exciting, but will take many years to implement, Long said.

"It will take about five years before we have our first test of concept in a model plant. And then, even if everything goes (according) to plan, it might be 15 or 20 years before we see this in any crop," he said.

"The United Nations Food and Agricultural Organization predicts that we're going to need about 70 percent more primary foodstuffs by the middle of this century," Long said. "So obviously new innovations like this are needed to try and get there, especially since the approaches of the Green Revolution are now approaching their biological limits."

Explore further: Team converts sugarcane to a cold-tolerant, oil-producing crop

More information: The full paper, "Can the Cyanobacterial Carbon-Concentrating Mechanism Increase Photosynthesis in Crop Species? A Theoretical Analysis," is available online: www.plantphysiol.org/content/e… 232611.full.pdf+html

add to favorites email to friend print save as pdf

Related Stories

Inner workings of cyanobacteria caught on video

Nov 25, 2013

Cyanobacteria, found in just about every ecosystem on Earth, are one of the few bacteria that can create their own energy through photosynthesis and "fix" carbon – from carbon dioxide molecules – and ...

What makes a plant a plant?

Jun 15, 2011

Although scientists have been able to sequence the genomes of many organisms, they still lack a context for associating the proteins encoded in genes with specific biological processes. To better understand the genetics underlying ...

Recommended for you

How a white rot tackles freshly-cut food

Dec 23, 2014

Researchers sequenced and analyzed the white rot fungus Phlebiopsis gigantea, which can break down fresh-cut conifer sapwood. They also sequenced and analyzed the set of P. gigantea's secreted proteins (secretome) ...

Bacteria could be rich source for making terpenes

Dec 23, 2014

If you've ever enjoyed the scent of a pine forest or sniffed a freshly cut basil leaf, then you're familiar with terpenes. The compounds are responsible for the essential oils of plants and the resins of ...

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.