Modeling surface circulation patterns in the Gulf of Mexico

March 19, 2014

During the 2010 Deepwater Horizon oil spill, scientists' understanding of the mesoscale surface circulation patterns of the Gulf of Mexico became a topic of great importance. With the oil slick growing, disaster response teams needed to know where to deploy. Many were concerned with the oil's ultimate destination—whether it would travel towards the Florida Keys and into the Atlantic Ocean, or remain in the Gulf. The drivers of surface circulation patterns are varied, ranging from wind to internal waves to pressure and salinity gradients, and the task of forecasting the oil's motion was a challenge.

In the wake of the oil spill, researchers devised a plan to deploy 300 drifters in the Gulf of Mexico, a project intended to greatly improve their understanding of in the Gulf. Known as the Grand Lagrangian Deployment (GLAD), the project was implemented in July 2012 when the fleet of drifters was dropped in the ocean and tracked as they moved along surface currents for the next six months.

Using observations of the drifters' motion, Olascoaga et al. tested the skill of a Lagrangian model in representing surface circulation in the Gulf. The authors' model used satellite observations of the geostrophic velocity (the balance of the pressure gradient and the Coriolis current) to calculate surface circulation patterns. The authors were concerned with modeling the behavior of "Lagrangian coherent structures"—hidden lines in the surface ocean that guide fluid parcel dynamics.

The authors find not only that the simulations made by the Lagrangian model aligned with the surface circulations revealed by the GLAD drifters, but also that the model's identification of Lagrangian coherent structures could actually be used to forecast surface circulation patterns that had yet to develop.

Explore further: Deepwater Horizon disaster could have billion dollar impact: new study

More information: Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures, Geophysical Research Letters, DOI: 10.1002/2013GL058624, 2013 http://onlinelibrary.wiley.com/doi/10.1002/2013GL058624/abstract

Related Stories

Researchers model Deepwater Horizon oil spill

March 18, 2014

Dr. Jason Jolliff is an oceanographer with the U.S. Naval Research Laboratory (NRL). "The emphasis here," he says, "is on developing models of the ocean environment to help the naval warfighter." His most recent paper, published ...

Recommended for you

What would a tsunami in the Mediterranean look like?

August 27, 2015

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal ...

Intensity of desert storms may affect ocean phytoplankton

August 27, 2015

Each spring, powerful dust storms in the deserts of Mongolia and northern China send thick clouds of particles into the atmosphere. Eastward winds sweep these particles as far as the Pacific, where dust ultimately settles ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.