Submersible and shape-changing robots developed for Fukushima inspection

Mar 12, 2014

Hitachi and HGNE today announced the development of a submersible crawling and swimming robot (crawler) and a shape-changing robot (crawler) which freely modify shape or posture to avoid obstacles even in narrow spaces to remotely explore wide areas. Hitachi and HGNE have developed these robots to conduct various investigations ahead of the remote equipment to be developed under the project supported by the Agency for Natural Resources and Energy, Japan, to remove the fuel at the Fukushima Daiichi Nuclear Power Plant. The submersible crawling and swimming robot and the shape-changing robot can move in water and on land, respectively, in areas where human entry is difficult due to narrow spaces or obstacles, and can be used to investigate leakage points in coolants as well as the state of fuel.

At Fukushima Daiichi Nuclear Power Plant, water is continuously fed into the reactor pressure vessel for cooling however some of the coolant water leaks from reactor pressure vessel into the primary containment vessel, and then into the basement levels of the power plant, becoming retained water containing radioactive substances. The retained water undergoes purification to remove the radioactive substances and salts, and is stored in tanks, however to reduce the amount of retained water, it is necessary to identify and repair the points of leakage in the power plant.

Dealing with such situations, Hitachi and HGNE have developed a submersible crawling and swimming which can move both horizontally in water as well as vertically against a wall, and a shape-changing robot which can travel within pipes with a diameter of 100mm as well as stably traverse uneven surfaces. These two robots will be applied in the investigative equipment to be used in preparation for the removal of the fuel from the Fukushima Daiichi Nuclear Power Plant as part of the project supported by the Agency for Natural Resources and Energy, Japan.

Details of the mobile equipment developed are as below.

(1) Submersible crawling swimming robot (crawler)

The submersible crawling swimming robot is for investigating submersed environments within the power plant, and can be used to investigate underwater leakage points of the retained water within a . Figure 1 shows there external appearance of the robot, and Table 1 gives the main specifications. A feature of this robot is the use of six thrusters (4 vertical, 2 horizontal) to enhance free movement in water, and one set of crawlers to achieve both crawling and swimming movement. Through the crawling movement, the robot can not only run along the bottom of a water pool but can also change posture to avoid obstacles while swimming and after swimming, to move along a wall through suction. As shown in Figure 1, Hitachi and HGNE assessed the mobility performance of this robot in and confirmed that the robot could float from the floor, swim, press against a wall and change its posture 90°, move stably along the wall using suction.

(2) Shape-changing robot (crawler)

There are areas within the plant where the radiation levels are high, and in order to insert the equipment in the target section, it is necessary to minimize the size of the opening in the primary containment vessel. At the same time, as it is difficult to achieve stable locomotion of small mobile equipment, issues existed as in how to overcome locomotion in more rugged environments. A shape-changing robot capable of changing its shape to pass through narrow spaces was developed based on crawling equipment which can stably run using two compact crawlers. Figure 2 shows there standard external appearance of the robot and its altered shape, and Table 2 gives the main specifications.

The shape-changing robot is composed of three joints on the main body and the two compact crawlers. To change shape, the crawler is rotated 90° in relation to the main body. The posture of the robot can be freely chosen from between an open rectangle posture where the crawlers are aligned along the side of the main body, or a single line posture where the main body and crawlers are configured in line, enabling both stable locomotion of flat surfaces as well as moving through narrow pipes. Using the robot in Figure 2, pilot tests simulating the environment within the primary containment vessel of a nuclear power plant were conducted. The results confirmed that the robot could travel through pipes with a diameter of 100mm, travel over flat gratings with a lattice dimension of 25 mm × 90 mm, as well as stably traverse uneven surfaces.

Table 1. Specifications of submersible crawling swimming robot

Table 2. Specifications of shape-changing robot

Details of these two robots will be presented at the Annual Meeting of the Atomic Energy Society of Japan (ASEJ), to be held from 26th to 28th March at the Tokyo City University, Tokyo, Japan.

Explore further: Future US Navy: Robotic sub-hunters, deepsea pods

add to favorites email to friend print save as pdf

Related Stories

Helping robots learn to walk

Feb 28, 2014

Fully autonomous robots could transform the way we live, but so far such machines remain beyond the reach of our most advanced technologies. Existing robots are generally limited to performing simple, well-structured ...

DALER project shows a walking flying robot (w/ Video)

Aug 04, 2013

( —At the Laboratory of Intelligent Systems we are developing a novel flying platform which has the ability to move on the ground by using its wings only. Using the wings as whegs to move on rough ...

Studying sea snakes for underwater robot design

Feb 03, 2014

The fascinating body structures of sea snakes which adapt them for life in water are being studied by University of Adelaide researchers as inspiration for a marine robot - the first of its kind.

Honda plans nuclear mission for robot

Aug 12, 2011

Japan's Honda is hoping to retool its humanoid robot ASIMO for a nuclear mission so it can join emergency work inside the crippled Fukushima Daiichi plant, a press report said Friday.

Recommended for you

Future US Navy: Robotic sub-hunters, deepsea pods

Mar 28, 2015

The robotic revolution that transformed warfare in the skies will soon extend to the deep sea, with underwater spy "satellites," drone-launching pods on the ocean floor and unmanned ships hunting submarines.

Festo has BionicANTs communicating by the rules for tasks

Mar 27, 2015

Germany-based automation company Festo, focused on technologies for tasks, turns to nature for inspiration, trying to take the cues from how nature performs tasks so efficiently. "Whether it's energy efficiency, ...

Virtual robotization for human limbs

Mar 26, 2015

Recent advances in computer gaming technology allow for an increasingly immersive gaming experience. Gesture input devices, for example, synchronise a player's actions with the character on the screen. Entertainment ...

Robots on reins could be the 'eyes' of firefighters

Mar 25, 2015

Researchers at King's College London have developed revolutionary reins that enable robots to act like guide dogs, which could enable that firefighters moving through smoke-filled buildings could save vital ...

Robot revolution will change world of work

Mar 24, 2015

Robots will fundamentally change the shape of the workforce in the next decade but many industries will still need a human touch, a QUT Future of Work Conference has heard.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.