Researchers devise new, stretchable antenna for wearable health monitoring

March 18, 2014 by Matt Shipman
The extremely flexible and resilient antennas contain silver nanowires and can be incorporated into wearable health monitoring devices. Credit: Amanda Myers

(Phys.org) —Researchers from North Carolina State University have developed a new, stretchable antenna that can be incorporated into wearable technologies, such as health monitoring devices.

"Many researchers – including our lab – have developed prototype sensors for wearable health systems, but there was a clear need to develop antennas that can be easily incorporated into those systems to transmit data from the sensors, so that patients can be monitored or diagnosed," says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and senior author of a paper describing the work.

The researchers wanted to develop an antenna that could be stretched, rolled or twisted and always return to its original shape, because wearable systems can be subject to a variety of stresses as patients move around.

To create an appropriately resilient, effective antenna, the researchers used a stencil to apply silver nanowires in a specific pattern and then poured a liquid polymer over the nanowires. When the polymer sets, it forms an elastic composite material that has the nanowires embedded in the desired pattern.

This patterned material forms the radiating element of a microstrip patch antenna. By manipulating the shape and dimensions of the radiating element, the researchers can control the frequency at which the antenna sends and receives signals. The radiating layer is then bonded to a "ground" layer, which is made of the same composite, except it has a continuous layer of silver nanowires embedded.

The researchers also learned that, while the antenna's frequency does change as it is stretched (since that changes its dimensions), the frequency stays within a defined bandwidth. "This means it will still communicate effectively with remote equipment while being stretched," Adams says. "In addition, it returns to its original shape and continues to work even after it has been significantly deformed, bent, twisted or rolled." As the frequency changes almost linearly with the strain, the antenna can be used a wireless strain sensor as well.

"Other researchers have developed stretchable sensors, using liquid metal, for example," Zhu says. "Our technique is relatively simple, can be integrated directly into the sensors themselves, and would be fairly easy to scale up."

The work on the new, stretchable builds on previous research from Zhu's lab to create elastic conductors and multifunctional sensors using silver nanowires.

Explore further: Researchers devise new means for creating elastic conductors

More information: The paper, "Stretchable and Reversibly Deformable Radio Frequency Antennas Based on Silver Nanowires," is published online in ACS Applied Materials & Interfaces: pubs.acs.org/doi/full/10.1021/am405972e

Related Stories

Researchers devise new means for creating elastic conductors

January 24, 2012

Researchers from North Carolina State University have developed a new method for creating elastic conductors made of carbon nanotubes, which will contribute to large-scale production of the material for use in a new generation ...

Recommended for you

Team develops targeted drug delivery to lung

September 2, 2015

Researchers from Columbia Engineering and Columbia University Medical Center (CUMC) have developed a new method that can target delivery of very small volumes of drugs into the lung. Their approach, in which micro-liters ...

Not another new phone! But Nextbit's Robin is smarter

September 2, 2015

San Francisco-based Nextbit wants you to meet Robin, which they consider as the smarter smartphone. Their premise is that no one is making a smart smartphone; when you get so big it's hard to see the forest through the trees. ...

Team creates functional ultrathin solar cells

August 27, 2015

(Phys.org)—A team of researchers with Johannes Kepler University Linz in Austria has developed an ultrathin solar cell for use in lightweight and flexible applications. In their paper published in the journal Nature Materials, ...

Magnetic fields provide a new way to communicate wirelessly

September 1, 2015

Electrical engineers at the University of California, San Diego demonstrated a new wireless communication technique that works by sending magnetic signals through the human body. The new technology could offer a lower power ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.