New statistical models could lead to better predictions of ocean patterns

Mar 18, 2014

The world's oceans cover more than 72 percent of the earth's surface, impact a major part of the carbon cycle, and contribute to variability in global climate and weather patterns. However, accurately predicting the condition of the ocean is limited by current methods. Now, researchers at the University of Missouri have applied complex statistical models to increase the accuracy of ocean forecasting that can influence the ways in which forecasters predict long-range events such as El Nińo and the lower levels of the ocean food chain—one of the world's largest ecosystems.

"The really is the most important part of the world's environmental system because of its potential to store carbon and heat, but also because of its ability to influence major atmospheric weather events such as droughts, hurricanes and tornados," said Chris Wikle, professor of statistics in the MU College of Arts and Science. "At the same time, it is essential in producing a food chain that is a critical part of the world's fisheries."

The vastness of the world's oceans makes predicting its changes a daunting task for oceanographers and climate scientists. Scientists must use direct observations from a limited network of ocean buoys and ships combined with of various qualities to create physical and biological models of the ocean. Wikle and Ralph Milliff, a senior research associate at the University of Colorado, adopted a statistical "Bayesian hierarchical model" that allows them to combine various sources of information as well as previous scientific knowledge. Their method helped improve the prediction of sea surface temperature extremes and wind fields over the ocean, which impact important features such as the frequency of tornadoes in tornado alley and the distribution of plankton in coastal regions—a critical first stage of the ocean food chain.

"Nate Silver of The New York Times combined various sources of information to understand and better predict the uncertainty associated with elections," Wikle said. "So much like that, we developed more sophisticated to combine various sources of data—satellite images, data from ocean buoys and ships, and scientific experience—to better understand the atmosphere over the ocean and the ocean itself. This led to models that help to better predict the state of the Mediterranean Sea, and the long-lead time prediction of El Nińo and La Nińa. Missouri, like most of the world, is affected by El Nińo and La Nińa (through droughts, floods and tornadoes) and the lowest levels of the affect us all through its effect on Marine fisheries."

El Nińo is a band of warm ocean water temperatures that periodically develops off the western coast of South America and can cause climatic changes across the Pacific Ocean and the U.S. La Nińa is the counterpart that also affects atmospheric changes throughout the country. Wikle and his fellow researchers feel that, through better statistical methods and models currently in development, a greater understanding of these phenomena and their associated impacts will help forecasters better predict potentially catastrophic events, which will likely be increasingly important as our climate changes.

Explore further: Weak El Nino possible by mid-2014, WMO says

More information: Wikle's study, "Uncertainty management in coupled physical-biological lower trophic level ocean ecosystem models," was funded in part by the National Science Foundation and was published in Oceanography and Statistical Science.

add to favorites email to friend print save as pdf

Related Stories

La Nina caused global sea level drop

Oct 29, 2012

The 2011 La Niña was so strong that it caused global mean sea level to drop by 5 millimeters (0.2 inches), a new study shows. Since the early 1990s, sea level has been rising by about 3 millimeters (0.1 inches) per year, ...

Recommended for you

NASA sees Odile soaking Mexico and southwestern US

8 hours ago

Tropical Storm Odile continues to spread moisture and generate strong thunderstorms with heavy rainfall over northern Mexico's mainland and the Baja California as well as the southwestern U.S. NASA's Tropical ...

NASA sees Tropical Storm Polo intensifying

8 hours ago

Tropical storm warnings now issued for a portion of the Southwestern coast of Mexico as Polo continues to strengthen. Infrared imagery from NASA's Aqua satellite showed powerful thunderstorms around the center ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

TegiriNenashi
1 / 5 (4) Mar 18, 2014
This article is so vague that is almost useless. They want to combine "data from ocean buoys and ships"? If we were living before Argo deployment, that might make sense. However, today Argo network data is vastly superior, so that ships data can be simply thrown away. Or are they implying that data quality doesn't matter, and their "statistical methods and models" are so clever, that they can explain things even with poor data?
Vietvet
5 / 5 (2) Mar 18, 2014
@TeririNenashi
The article could have been a little clearer but Argo ARE buoys and ships fill in gaps and fall under "previous scientific research".