Researchers create stable 2-D electron gas in strontium titanate, open door to new kind of electronics

Mar 03, 2014
This shows the atomic structure of SrTiO3(110). Credit: Vienna University of Technology

Usually, microelectronic devices are made of silicon or similar semiconductors. Recently, the electronic properties of metal oxides have become quite interesting. These materials are more complex, yet offer a broader range of possibilities to tune their properties. An important breakthrough has now been achieved at the Vienna University of Technology: a two dimensional electron gas was created in strontium titanate. In a thin layer just below the surface electrons can move freely and occupy different quantum states.

Strontium titanate is not only a potential future alternative to standard semiconductors, it could also exhibit interesting phenomena, such as superconductivity, thermoelectricity or magnetic effects that do not occur in the that are used for today's electronic devices.

The Surface Layer and the Inside

This project closely links theoretical calculations and experiments. Zhiming Wang from Professor Ulrike Diebold's research team was the leading experimentalist; some of the experimental work was done at the synchrotron BESSY in Berlin. Zhicheng Zhong from Professor Karsten Held's group studied the material in computer simulations.

Not all of the atoms of are arranged in the same pattern: if the material is cut at a certain angle, the atoms of the layer form a structure, which is different from the structure in the bulk of the material. "Inside, every titanium atom has six neighbouring , whereas the titanium atoms at the surface are only connected to four oxygen atoms each", says Ulrike Diebold. This is the reason for the remarkable chemical stability of the surface. Normally such materials are damaged if they come into contact with water or oxygen.

This shows a strontium titanate crystal in the vacuum chamber. Credit: Vienna University of Technology

Migrating Oxygen Atoms

Something remarkable happens when the material is irradiated with high-energy electromagnetic waves: "The radiation can remove oxygen atoms from the surface", Ulrike Diebold explains. Then other oxygen atoms from within the bulk of the material move up to the surface. Inside the material, an oxygen deficiency builds up, as well a surplus of electrons.

"These electrons, located in a two dimensional layer very close to the surface, can move freely. We call this an ", says Karsten Held. There has already been some evidence of two dimensional electron gases in similar materials, but until now the creation of a stable, durable electron gas at a surface has been impossible. The properties of the electrons in the gas can be finely tuned. Depending on the intensity of the radiation, the number of electrons varies. By adding different atoms, the can also be changed.

This is Zhiming Wang. Credit: Vienna University of Technology

"In solid state physics, the so-called band structure of a material is very important. It describes the relationship between the energy and the momentum of the electrons. The remarkable thing about our surface is that it shows completely different kinds of band structures, depending on the quantum state of the electron", says Karsten Held.

The electron gas in the new material exhibits a multitude of different electronic structures. Some of them could very well be suitable for producing interesting magnetic effects or superconductivity. The promising properties of strontium titanate will now be further investigated. The researchers hope that, by applying external electric fields or by placing additional metal atoms on the surface, the new material could reveal a few more of its secrets.

Explore further: New research predicts when, how materials will act

More information: Anisotropic two-dimensional electron gas at SrTiO3(110), PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1318304111

add to favorites email to friend print save as pdf

Related Stories

How to make graphene superconducting

Feb 11, 2014

Whenever a new material is discovered, scientists are eager to find out whether or not it can be superconducting. This applies particularly to the wonder material graphene. Now, an international team around ...

Metal oxide 'can transform'

Feb 15, 2010

(PhysOrg.com) -- A team including Oxford University scientists has been investigating what happens to the top layer of atoms on the surface of a material that splits water and has potential uses in nanoelectronics.

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.