Simulating how the Earth kick-started metabolism

Mar 12, 2014
Laurie Barge of NASA's Jet Propulsion Laboratory, Pasadena, Calif., is seen here with a version of one of her team's fuel cells. They use the fuel cells to study the chemical processes thought to have given rise to life on Earth, and possibly other planets. Credit: NASA/JPL-Caltech

(Phys.org) —Researchers have developed a new approach to simulating the energetic processes that may have led to the emergence of cell metabolism on Earth – a crucial biological function for all living organisms.

The research, which is published online today in the journal Astrobiology, could help scientists to understand whether it is possible for life to have emerged in similar environments on other worlds.

Dr Terry Kee from the School of Chemistry at the University of Leeds, one of the co-authors of the research paper, said: "What we are trying to do is to bridge the gap between the geological processes of the early Earth and the emergence of biological life on this planet."

Previously, some scientists have proposed that living organisms may have been transported to Earth by meteorites. Yet there is more support for the theory that life emerged on Earth in places like on the ocean floor, forming from inanimate matter such as the chemical compounds found in gases and minerals.

"Before , one could say the early Earth had 'geological life'. It may seem unusual to consider geology, involving inanimate rocks and minerals, as being alive. But what is life?" said Dr Kee.

"Many people have failed to come up with a satisfactory answer to this question. So what we have done instead is to look at what life does, and all life forms use the same chemical processes that occur in a to generate their energy."

This video is not supported by your browser at this time.
Credit: University of Leeds

Fuel cells in cars generate electrical energy by reacting fuels and oxidants. This is an example of a 'redox reaction', as one molecule loses electrons (is oxidised) and one molecule gains electrons (is reduced).

Similarly, photosynthesis in plants involves generating electrical energy from the reduction of carbon dioxide into sugars and the oxidation of water into molecular oxygen. And respiration in cells in the human body is the oxidation of sugars into carbon dioxide and the reduction of oxygen into water, with electrical energy produced in the reaction.

Certain geological environments, such as hydrothermal vents can be considered as 'environmental fuel cells', since electrical energy can be generated from between hydrothermal fuels and seawater oxidants, such as oxygen. Indeed, last year researchers in Japan demonstrated that electrical power can be harnessed from these vents in a deep-sea experiment in Okinawa.

In the new study, the researchers have demonstrated a proof of concept for their fuel cell model of the emergence of on Earth.

In the Energy Leeds Renewable Lab at the University of Leeds and NASA's Jet Propulsion Laboratory, the team replaced traditional platinum catalysts in fuel cells and electrical experiments with those composed of geological minerals.

Dr Laura Barge from the NASA Astrobiology Institute 'Icy Worlds' team at JPL in California, US, and lead author of the paper, said: "Certain minerals could have driven geological redox reactions, later leading to a biological metabolism. We're particularly interested in electrically conductive minerals containing iron and nickel that would have been common on the early Earth."

Iron and nickel are much less reactive than platinum. However, a small but significant power output successfully demonstrated that these metals could still generate electricity in the fuel cell – and hence also act as catalysts for redox reactions within hydrothermal vents in the early Earth.

For now, the chemistry of how geological reactions driven by inanimate rocks and minerals evolved into biological metabolisms is still a black box. But with a laboratory-based model for simulating these processes, scientists have taken an important step forward to understanding the origin of life on this planet and whether a similar process could occur on other worlds.

Dr Barge said: "These experiments simulate the produced in geological systems, so we can also use this to simulate other planetary environments with liquid water, like Jupiter's moon Europa or early Mars.

"With these techniques we could actually test whether any given hydrothermal system could produce enough energy to start life, or even, provide energetic habitats where might still exist and could be detected by future missions."

Explore further: Ancient minerals: Which gave rise to life?

More information: The research paper, 'The Fuel Cell Model of Abiogenesis: A New Approach to Origin-of-Life Simulations', will be published online by the journal Astrobiology on 13 March 2014. online.liebertpub.com/doi/full… 0.1089/ast.2014.1140

add to favorites email to friend print save as pdf

Related Stories

Power behind primordial soup discovered

Apr 04, 2013

(Phys.org) —Researchers at the University of Leeds may have solved a key puzzle about how objects from space could have kindled life on Earth.

Origin of life emerged from cell membrane bioenergetics

Dec 20, 2012

A coherent pathway which starts from no more than rocks, water and carbon dioxide and leads to the emergence of the strange bio-energetic properties of living cells, has been traced for the first time in a major hypothesis ...

Ancient minerals: Which gave rise to life?

Nov 25, 2013

Life originated as a result of natural processes that exploited early Earth's raw materials. Scientific models of life's origins almost always look to minerals for such essential tasks as the synthesis of ...

Natural deep-sea batteries

Oct 25, 2013

Exploring the deep oceans presents huge technical challenges, many of which could be overcome if there were some cheap and efficient way to deliver power to machines while at depth. To tackle this problem, ...

Recommended for you

Chemical biologists find new halogenation enzyme

8 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

13 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

13 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

15 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

User comments : 0