Sea surface is a sink for nitrogen oxides at night

Mar 03, 2014
Instruments to sample the air and measure turbulence are deployed off the pier at Scripps Institution of Oceanography in La Jolla, Calif. Credit: Michelle Kim

The surface of the sea takes up nitrogen oxides that build up in polluted air at night, new measurements on the coast of southern California have shown. The ocean removes about 15 percent of these chemicals overnight along the coast, a team of atmospheric chemists reports in the early online edition of the Proceedings of the National Academy of Sciences the week of March 3.

Nitrogen oxides, formed by the burning of fossil fuels, generate photochemical smog. Atmospheric chemists would like to account for the fates of these molecules in a kind of budget that indentifies their sources and sinks – ways in which they are removed from the air.

"One often neglected path is reaction at the surface of the ," said Tim Bertram, an assistant professor of chemistry at the University of California, San Diego, who led the research. "The sea has a salty, rich, organic surface with the potential for a variety of chemical reactions."

To track the cycle of nitrogen in the atmosphere, they studied dinitrogen pentoxide, a molecule that results from the oxidation of nitrogen oxides. It can react with from sea salt, for example, to form nitryl chloride. When sunlight hits nitryl chloride the next morning, it regenerates nitrogen oxides and frees a chlorine radical that attacks other molecules in reactions that can lead to the formation of ozone.

Michelle Kim, a graduate student at UC San Diego's Scripps Institution of Oceanography working with Bertram, deployed intruments at the end of the institute's pier in La Jolla, Calif., to measure the flux of these molecules.

On the night of February 20, 2013, the usual offshore breeze reversed to provide the pure ocean fetch needed to measure the exchange between air and sea. The airmass she measured also contained emissions from Los Angeles that had blown out to sea. That gave Kim an opportunity to measure the fates of dinitrogen pentoxide and its product, nitryl chloride, over the course of a night.

By simultaneously measuring concentrations of both molecules and turbulence in the air above the sea surface, Kim saw a net movement of dinitrogen pentoxide into the ocean, but was surprised to see no net exit of nitryl chloride into the air.

"We knew from previous work that nitrogen oxides are lost to various surfaces – sea spray and other aerosols, even snowpack," she said. "This study shows – for the first time - that the ocean is a terminal sink for nocturnal , and not a source for nitryl chloride under these sampling conditions."

These observations haven't been made before in large part because the measurements use a micrometeorological technique to answer an atmospheric chemistry question. Co-author Delphine Farmer at Colorado State University, a leader in these methods, helped to guide to the flux measurements.

Betram says it's part of his group's mission, to "embrace the complexity to study real systems in their native states and the coupling of the natural world with our influence."

Explore further: Current residential development research is a poor foundation for sustainable development

More information: A controlling role for the air−sea interface in the chemical processing of reactive nitrogen in the coastal marine boundary layer, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1318694111

Related Stories

Wintertime air chemistry to be studied

Mar 02, 2011

NOAA scientists and their colleagues from Boulder, Colo., and across the country have gathered in Erie, Colo., for a month-long study of the chemistry of the wintertime atmosphere, which they hope will shed ...

One tree likes seabird poop, the next prefers fresh air

Jan 24, 2014

Off the west coast of Peru, seabirds deposit thick layers of guano that accumulates on the ground because of the lack of rain. Guano has historically played a key role in agriculture worldwide because it ...

Chemists discover ozone-boosting reaction

Jul 20, 2009

(PhysOrg.com) -- Burning of fossil fuels pumps chemicals into the air that react on surfaces such as buildings and roads to create photochemical smog-forming chlorine atoms, UC Irvine scientists report in ...

Recommended for you

Study provides detailed projections of coral bleaching

2 hours ago

While research shows that nearly all coral reef locations in the Caribbean and Gulf of Mexico will experience bleaching by mid-century, a new study showing in detail when and where bleaching will occur shows ...

Germany restricts fracking but doesn't ban it

8 hours ago

The German cabinet drew up rules Wednesday on the hitherto unregulated technology of "fracking" in Germany, narrowly restricting its use, but stopping short of an outright ban.

Life in the poisonous breath of sleeping volcanos

8 hours ago

Researchers of the University Jena analyze the microbial community in volcanically active soils. In a mofette close to the Czech river Plesná in north-western Bohemia, the team around Prof. Dr. Kirsten Küsel ...

Eggs and chicken instead of beef reap major climate gains

9 hours ago

Beef on our plates is one of the biggest climate villains, but that does not mean we have to adopt a vegan diet to reach climate goals. Research results from Chalmers University of Technology show that adopting ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.