Sea surface is a sink for nitrogen oxides at night

Mar 03, 2014
Instruments to sample the air and measure turbulence are deployed off the pier at Scripps Institution of Oceanography in La Jolla, Calif. Credit: Michelle Kim

The surface of the sea takes up nitrogen oxides that build up in polluted air at night, new measurements on the coast of southern California have shown. The ocean removes about 15 percent of these chemicals overnight along the coast, a team of atmospheric chemists reports in the early online edition of the Proceedings of the National Academy of Sciences the week of March 3.

Nitrogen oxides, formed by the burning of fossil fuels, generate photochemical smog. Atmospheric chemists would like to account for the fates of these molecules in a kind of budget that indentifies their sources and sinks – ways in which they are removed from the air.

"One often neglected path is reaction at the surface of the ," said Tim Bertram, an assistant professor of chemistry at the University of California, San Diego, who led the research. "The sea has a salty, rich, organic surface with the potential for a variety of chemical reactions."

To track the cycle of nitrogen in the atmosphere, they studied dinitrogen pentoxide, a molecule that results from the oxidation of nitrogen oxides. It can react with from sea salt, for example, to form nitryl chloride. When sunlight hits nitryl chloride the next morning, it regenerates nitrogen oxides and frees a chlorine radical that attacks other molecules in reactions that can lead to the formation of ozone.

Michelle Kim, a graduate student at UC San Diego's Scripps Institution of Oceanography working with Bertram, deployed intruments at the end of the institute's pier in La Jolla, Calif., to measure the flux of these molecules.

On the night of February 20, 2013, the usual offshore breeze reversed to provide the pure ocean fetch needed to measure the exchange between air and sea. The airmass she measured also contained emissions from Los Angeles that had blown out to sea. That gave Kim an opportunity to measure the fates of dinitrogen pentoxide and its product, nitryl chloride, over the course of a night.

By simultaneously measuring concentrations of both molecules and turbulence in the air above the sea surface, Kim saw a net movement of dinitrogen pentoxide into the ocean, but was surprised to see no net exit of nitryl chloride into the air.

"We knew from previous work that nitrogen oxides are lost to various surfaces – sea spray and other aerosols, even snowpack," she said. "This study shows – for the first time - that the ocean is a terminal sink for nocturnal , and not a source for nitryl chloride under these sampling conditions."

These observations haven't been made before in large part because the measurements use a micrometeorological technique to answer an atmospheric chemistry question. Co-author Delphine Farmer at Colorado State University, a leader in these methods, helped to guide to the flux measurements.

Betram says it's part of his group's mission, to "embrace the complexity to study real systems in their native states and the coupling of the natural world with our influence."

Explore further: One tree likes seabird poop, the next prefers fresh air

More information: A controlling role for the air−sea interface in the chemical processing of reactive nitrogen in the coastal marine boundary layer, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1318694111

add to favorites email to friend print save as pdf

Related Stories

Wintertime air chemistry to be studied

Mar 02, 2011

NOAA scientists and their colleagues from Boulder, Colo., and across the country have gathered in Erie, Colo., for a month-long study of the chemistry of the wintertime atmosphere, which they hope will shed ...

One tree likes seabird poop, the next prefers fresh air

Jan 24, 2014

Off the west coast of Peru, seabirds deposit thick layers of guano that accumulates on the ground because of the lack of rain. Guano has historically played a key role in agriculture worldwide because it ...

Chemists discover ozone-boosting reaction

Jul 20, 2009

(PhysOrg.com) -- Burning of fossil fuels pumps chemicals into the air that react on surfaces such as buildings and roads to create photochemical smog-forming chlorine atoms, UC Irvine scientists report in ...

Recommended for you

Dutch unveil big plan to fight rising tides

7 hours ago

The Netherlands on Tuesday unveiled a multi-billion-euro, multi-decade plan to counter the biggest environmental threat to the low-lying European nation: surging seawater caused by global climate change.

Drought hits Brazil coffee harvest

10 hours ago

Coffee output in Brazil, the world's chief exporter, will slide this year after the worst drought in decades, agricultural agency Conab said Tuesday.

Landmark fracking study finds no water pollution

12 hours ago

The final report from a landmark federal study on hydraulic fracturing, or fracking, has found no evidence that chemicals or brine water from the gas drilling process moved upward to contaminate drinking water at one site ...

Politics divide coastal residents' views of environment

13 hours ago

From the salmon-rich waters of Southeast Alaska to the white sand beaches of Florida's Gulf Coast to Downeast Maine's lobster, lumber and tourist towns, coastal residents around the U.S. share a common characteristic: ...

User comments : 0