Scientists open a new window into quantum physics with superconductivity in LEDs

Mar 18, 2014
This image shows Alex Hayat (foreground) in lab. Credit: NSERC

A team of University of Toronto physicists led by Alex Hayat has proposed a novel and efficient way to leverage the strange quantum physics phenomenon known as entanglement. The approach would involve combining light-emitting diodes (LEDs) with a superconductor to generate entangled photons and could open up a rich spectrum of new physics as well as devices for quantum technologies, including quantum computers and quantum communication.

Entanglement occurs when particles become correlated in pairs to predictably interact with each other regardless of how far apart they are. Measure the properties of one member of the entangled pair and you instantly know the properties of the other. It is one of the most perplexing aspects of quantum mechanics, leading Einstein to call it "spooky action at a distance."

"A usual light source such as an LED emits photons randomly without any correlations," explains Hayat, who is also a Global Scholar at the Canadian Institute for Advanced Research. "We've proved that generating entanglement between photons emitted from an LED can be achieved by adding another peculiar physical effect of superconductivity - a resistance-free electrical current in certain materials at low temperatures."

This effect occurs when electrons are entangled in Cooper pairs – a phenomenon in which when one electron spins one way, the other will spin in the opposite direction. When a layer of such superconducting material is placed in close contact with a semiconductor LED structure, Cooper pairs are injected in to the LED, so that pairs of entangled electrons create entangled pairs of photons. The effect, however, turns out to work only in LEDs which use nanometre-thick active regions – quantum wells.

"Typically quantum properties show up on very small scales – an electron or an atom. Superconductivity allows quantum effects to show up on large scales – an electrical component or a whole circuit. This quantum behaviour can significantly enhance light emission in general, and entangled photon emission in particular," Hayat said.

Explore further: 'Spooky action' builds a wormhole between 'entangled' quantum particles

More information: The research was published in Physical Review B, an international journal specializing in condensed-matter phenomena and materials physics on March 10. Full article:… 3/PhysRevB.89.094508

add to favorites email to friend print save as pdf

Related Stories

Researchers explore quantum entanglement

Feb 08, 2013

Albert Einstein called quantum entanglement—two particles in different locations, even on other sides of the universe, influencing each other—"spooky action at a distance."

Quantum physics mimics spooky action into the past

Apr 23, 2012

Physicists of the group of Prof. Anton Zeilinger at the Institute for Quantum Optics and Quantum Information (IQOQI), the University of Vienna, and the Vienna Center for Quantum Science and Technology (VCQ) ...

What if quantum physics worked on a macroscopic level?

Jul 25, 2013

Quantum physics concerns a world of infinitely small things. But for years, researchers from the University of Geneva (UNIGE), Switzerland, have been attempting to observe the properties of quantum physics on a larger scale, ...

Recommended for you

There's a kind of Hush surrounding quantum systems

Jul 18, 2014

( —Has a persistent noise ever kept you awake at night? Well it isn't just you. Scientists at The University of Nottingham have had the same problem with quantum technologies.

Quantum tech disappoints, but only because we don't get it

Jul 16, 2014

Over the next five years, the UK government will spend £270m on supporting research in "quantum technology". When budget announcements were made in 2013, provisions for offshore wind and shale gas extraction were received ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Mar 19, 2014
My! My! When will people realise that superconduction is not caused by entangled electron-pairs. The mainstream researchers in the field of superconduction is even more persistent in this absurdity than the flat earthers are in their equally stupid belief.
5 / 5 (1) Mar 19, 2014
to predictably interact with each other regardless of how far apart they are.

They do not interact with each other. Their actions are highly correlated. That's why it's called "action at a distance" and not "interaction at a distance" (the latter would imply information transmission, while the former does not)
It's a subtle, but crucial, difference.