Scientists demonstrate first genome methylation in fruit fly

Mar 27, 2014

A group of scientists from Children's Hospital Oakland Research Institute and UC Berkeley report the first mapping of genome methylation in the fruit-fly Drosophila melanogaster in their paper "Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity," published this month in Genome Research.

This paper represents a major advance in the study of DNA methylation in insects. No previous study has succeeded in pinpointing the location of DNA methylation in the fly . The common opinion in the field was that the fly does not have genomic methylation. But Drs. Sachiko Takayama and Joseph Dhahbi, co-first authors who carried out the key work, and Drs. David Martin and Dario Boffelli, who led the project, found otherwise. The authors were able to detect genomic methylation in the fly by solving the main technical hurdle: fly methylation is relatively rare, and they developed a sensitive method that allowed them to detect it.

Why is this finding important? Methylation is a stable chemical modification of the genome; in humans and other vertebrates it participates in controlling when and where genes are on and off, but its functions in other organisms are not understood. The finding suggests that genome methylation may have a hitherto uncharacterized function. While the authors still do not know what genome methylation does in the fly, they were able to find that the DNA sequence patterns that associate with methylation are very different from the patterns seen in humans, or in other animal or plant species to date.

Drosophila is one of the classic model organisms, with very well established tools to study its biology. The researchers' description of methylation in the fly will facilitate the use of this powerful experimental system to study methylation. Drosophila has only one known enzyme that could establish DNA methylation, and the researchers show that this enzyme is not responsible for the methylation patterns they detected. The fly genome has been studied very deeply, but the finding suggests that a new enzyme lies undiscovered within it.

Explore further: Living in the genetic comfort zone

More information: www.childrenshospitaloakland.o… -gr.162412.113_1.pdf

add to favorites email to friend print save as pdf

Related Stories

Linking risk factors and disease origins in breast cancer

Nov 20, 2013

Researchers from the Geisel School of Medicine at Dartmouth have found that epigenetic changes to DNA are associated with aging in disease-free breast tissues and are further altered in breast tumors. Epigenetic changes describe ...

Methylation linked to metabolic disease

Nov 11, 2013

(Medical Xpress)—In the first in-depth analysis of DNA methylation in fat, a process that affects the regulation of genes, researchers have linked regions of methylation to metabolic traits such as high ...

Recommended for you

Living in the genetic comfort zone

14 hours ago

The information encoded in the DNA of an organism is not sufficient to determine the expression pattern of genes. This fact has been known even before the discovery of epigenetics, which refers to external ...

Better genes for better beans

20 hours ago

Some of the most underappreciated crops could soon become the most valuable tools in agriculture with new research from the Centre for Underutilised Crops at the University of Southampton. Coordinator Mark Chapman has created ...

Aggressive plant fungus threatens wheat production

20 hours ago

The spread of exotic and aggressive strains of a plant fungus is presenting a serious threat to wheat production in the UK, according to research published in Genome Biology. The research uses a new survei ...

A taxi ride to starch granules

21 hours ago

Plant scientists at ETH have discovered a specific protein that significantly influences the formation of starch in plant cells. The findings may be useful in the food and packaging industries.

Lager yeast ancestors were full of eastern promise

22 hours ago

There are few drinks as iconic as a 'pint of the black stuff'. It might, therefore, surprise beer connoisseurs to learn that the DNA of the all-important brewing yeast – the building blocks of the perfect Stout – is the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.