It looks like rubber but isn't

March 21, 2014
A solution of ring polymers (each colour corresponds to one polymer). Credit: SISSA

The experimental and numerical study of the behaviour of polymers in concentrated solutions is a line of research that is still highly active. In the past, it enabled us to understand why materials like rubber have certain elastic properties. A distinctive feature of these systems is that the long "chained" molecules composing them tend to penetrate each other and interweave at their ends forming very durable bonds that make them always return to their initial conformation whenever they are "stretched."

The behaviour of dense solutions of "ring" polymers, i.e., polymers that form closed loops like rings and have no free ends, is very different. Angelo Rosa, a theoretical physicist from the International School for Advanced Studies (SISSA) in Trieste, and Ralf Everaers from the École Normale Supérieure de Lyon devised a highly efficient numerical method to study these materials, a method which they intend to apply to biology in the future.

"Ring polymers – by construction – don't have free ends and so when in a solution they cannot interweave with each other and form bonds as the more common linear polymers do," explains Rosa. "This causes them to behave very differently from linear polymers. So we wanted to understand the physics of these peculiar solutions and we constructed some models of ring polymers that allowed us to predict their behaviour. We then compared the models we created with other earlier simulations conducted with different methods, and found that they confirmed our findings."

"The really interesting thing about our study is that it considerably reduces analysis time, which means the method is highly efficient," the researcher adds. "We found that compared to dense solutions of linear polymers, which form the base of the more common visco-elastic materials such as rubber, these materials are much more fragile because a ring polymer interweaves very little with the others and remains 'topologically' always confined within a restricted region."

Rosa and Everaers point out that they will now continue to develop their research in the field of biology. "We think that our models of ring polymers are useful to understand chromosomes dissolved in the cell nucleus," says Rosa. "Even though it isn't a circular polymer, a chromosome behaves in a very similar manner, in that it remains topologically isolated from the other chromosomes dissolved in the cytoplasm for a long time."

Explore further: Drawing and writing in liquid with light (w/ Video)

More information: Angelo Rosa and Ralf Everaers, "Ring Polymers in the Melt State: The Physics of Crumpling." Phys. Rev. Lett. 112, 118302, Published 18 March 2014. DOI: dx.doi.org/10.1103/PhysRevLett.112.118302

Related Stories

Drawing and writing in liquid with light (w/ Video)

November 4, 2013

University of Helsinki researchers have manufactured photochemically active polymers which can be dissolved in water or certain alcohols. The new soluble, photosensitive polymer was created by doctoral student Szymon Wiktorowicz.

25 years of DNA on the computer

January 3, 2014

DNA carries out its activities "diluted" in the cell nucleus. In this state it synthesises proteins and, even though it looks like a messy tangle of thread, in actual fact its structure is governed by precise rules that are ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.