Study reveals details of logical circuits built using living slime molds

Mar 27, 2014

A future computer might be a lot slimier than the solid silicon devices we have today. In a study published in the journal Materials Today, European researchers reveal details of logic units built using living slime molds, which might act as the building blocks for computing devices and sensors.

Andrew Adamatzky (University of the West of England, Bristol, UK) and Theresa Schubert (Bauhaus-University Weimar, Germany) have constructed logical circuits that exploit networks of interconnected slime mold tubes to process information.

One is more likely to find the slime mold Physarum polycephalum living somewhere dark and damp rather than in a computer science lab. In its "plasmodium" or vegetative state, the organism spans its environment with a network of tubes that absorb nutrients. The tubes also allow the organism to respond to light and changing environmental conditions that trigger the release of reproductive spores.

In earlier work, the team demonstrated that such a tube network could absorb and transport different colored dyes. They then fed it edible nutrients - oat flakes - to attract tube growth and common salt to repel them, so that they could grow a network with a particular structure. They then demonstrated how this system could mix two dyes to make a third color as an "output".

Using the dyes with magnetic nanoparticles and tiny fluorescent beads, allowed them to use the slime mold network as a biological "lab-on-a-chip" device. This represents a new way to build microfluidic devices for processing environmental or medical samples on the very small scale for testing and diagnostics, the work suggests. The extension to a much larger network of slime mold tubes could process nanoparticles and carry out sophisticated Boolean logic operations of the kind used by computer circuitry. The team has so far demonstrated that a slime mold can carry out XOR or NOR Boolean operations. Chaining together arrays of such logic gates might allow a slime mold computer to carry out binary operations for computation.

"The slime mold based gates are non-electronic, simple and inexpensive, and several gates can be realized simultaneously at the sites where protoplasmic tubes merge," conclude Adamatzky and Schubert.

Are we entering the age of the biological computer? Stewart Bland, Editor of Materials Today, believes that "although more traditional electronic materials are here to stay, research such as this is helping to push and blur the boundaries of materials science, science and biology, and represents an exciting prospect for the future."

Explore further: What can slime molds offer computing?

More information: "Slime mold microfluidic logical gates" by Andrew Adamatzky and Theresa Schubert. It appears in Materials Today, Volume 17, Issue 2, March 2014, Pages 86–91 (2014). www.sciencedirect.com/science/… ii/S136970211400025X

add to favorites email to friend print save as pdf

Related Stories

What can slime molds offer computing?

Jan 03, 2014

Slime molds may not have brains, but that isn't preventing some computer scientists from investigating them for their potential as novel, unconventional computers. A slime mold consists of a single cell containing ...

Slime mold prefers sleeping pills

Jun 13, 2011

In a new paper published in Nature Precedings, Andrew Adamatzky from the University of the West of England shows that slime molds like Physarum polycephalum prefers sleeping pills and their sedative effects over ...

Study shows slime molds have spatial memory

Oct 09, 2012

(Phys.org)—Biology researchers from the University of Sydney, working with colleagues from Paul Sabatier Université in Toulouse have found that the brainless slime mold Physarum polycephalum, is able t ...

Recommended for you

A crystal wedding in the nanocosmos

Jul 23, 2014

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor ...

PPPL studies plasma's role in synthesizing nanoparticles

Jul 22, 2014

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

User comments : 0