Study reveals new insights into sulfate-reducing bacteria

Mar 20, 2014
Study reveals new insights into sulfate-reducing bacteria

(Phys.org) —Sulfate-reducing bacteria are common in oxygen-deprived habitats, and they can have harmful industrial and health effects as well as beneficial environmental effects. This study examines the biochemical pathways used by these microbes to convert sulfate to hydrogen sulfide.

By revealing components involved in electron transport required for sulfate reduction, this study provides novel insights into the metabolic pathways essential for the growth of sulfate-reducing . The results could potentially be used to increase the effectiveness of environmental remediation efforts and to control health and industrial problems caused by these bacteria.

Sulfate-reducing bacteria breathe sulfate rather than oxygen, reducing sulfate to to meet their energy needs. Hydrogen sulfide is a toxic gas that smells like rotten eggs and can not only cause health problems by making its way into drinking water supplies, but also lead to metal corrosion of household plumbing as well as oil and gas pipelines. On the other hand, these bacteria can be used for environmental remediation efforts because they convert contaminants such as uranium, chromium and technetium from soluble to insoluble forms, reducing the risk of groundwater contamination with these metals. To predict and control the metabolic capabilities of these bacteria for beneficial environmental purposes, it's necessary to have a detailed understanding of the involved in sulfate reduction.

To address this issue, scientists from the University of Missouri and Oak Ridge National Laboratory and examined required for sulfate reduction in bacteria. They tested the notion that sulfate reduction relies on pathways of electron flow from the periplasm—the outer portion of the cell—to the cytoplasm—the interior of the cell where sulfate reduction occurs.

To test their hypothesis, they used mutant forms of a sulfate-reducing bacterium called Desulfovibrio alaskensis. The qrcA mutant lacks a subunit of a transmembrane protein complex called QrcABCD, and the cycA mutant is deficient in a protein called type I tetraheme cytochrome c3 (TpIc3). QrcABCD spans the inner membrane separating the periplasm from the cytoplasm and thus could serve as a conduit for electron flow between these two cellular regions. On the other hand, TpIC3 is located in the periplasm and has been proposed to be an electron reservoir capable of providing electrons to transmembrane complexes such as QrcABCD.

The researchers characterized bacterial growth and examined gene expression using proteomic and transcriptomic analyses. They performed the proteomic data acquisition and analysis at EMSL, a DOE national scientific user facility, using an accurate mass and time tag approach that was developed at Pacific Northwest National Laboratory. They found that both qrcA and cycA mutations impaired and interrupted required for sulfate reduction.

The results suggest that both TpIc3 and QrcABCD are essential for the transfer of electrons from the periplasm to the cytoplasm to drive sulfate reduction. In addition, the work supports a recently discovered energy process that increases the efficiency of energy use in microbes. As such, the process of electrons sharing power for driving metabolism is likely to be important in schemes for biofuel production.

Explore further: New fat cells created quickly, but they don't disappear

More information: Keller, K.L., Rapp-Giles, B.J., Semkiw, E.S., Porat, I., Brown, S.D., Wall, J.D. "New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20." Appl Environ Microbiol 80(3):855-68. (2014). [DOI: 10.1128/AEM.02963-13].

add to favorites email to friend print save as pdf

Related Stories

Value-added sulfur scrubbing

Oct 21, 2010

Power plants that burn fossil fuels remain the main source of electricity generation across the globe. Modern power plants have scrubbers to remove sulfur compounds from their flue gases, which has helped reduce the problem ...

Recommended for you

The origins of polarized nervous systems

17 hours ago

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

New fat cells created quickly, but they don't disappear

21 hours ago

Once fat cells form, they might shrink during weight loss, but they do not disappear, a fact that has derailed many a diet. Yale researchers in the March 2 issue of the journal Nature Cell Biology descri ...

A single target for microRNA regulation

23 hours ago

It has generally been believed that microRNAs control biological processes by simultaneously, though modestly, repressing a large number of genes. But in a study published in Developmental Cell, a group ...

Sizing up cells: Study finds possible regulator of growth

Mar 02, 2015

Modern biology has attained deep knowledge of how cells work, but the mechanisms by which cellular structures assemble and grow to the right size largely remain a mystery. Now, Princeton University researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.