Relativity shakes a magnet

Mar 03, 2014
Electrically shaken GaMnAs magnet

The research group of Professor Jairo Sinova at the Institute of Physics at Johannes Gutenberg University Mainz (JGU), in collaboration with researchers from Prague, Cambridge, and Nottingham, have predicted and discovered a new physical phenomenon that allows to manipulate the state of a magnet by electric signals. Current technologies for writing, storing, and reading information are either charge-based or spin-based. Semiconductor flash or random access memories are prime examples among the large variety of charge-based devices.

They utilize the possibility offered by semiconductors to easily electrically manipulate and detect their electronic charge states representing the "zeros" and "ones". The downside is that weak perturbations such as impurities, temperature change, or radiation can lead to uncontrolled charge redistributions and, as a consequence, to data loss. Spin-based devices operate on an entirely distinct principle. In some materials, like iron, electron spins generate magnetism and the position of the north and south pole of the magnet can be used to store the zeros and ones. This technology is behind memory applications ranging from kilobyte magnetic stripe cards to terabyte computer hard disks.

Since they are based on spin, the devices are much more robust against charge perturbations. However, the drawback of current magnetic memories is that in order to reverse the north and south poles of the magnet, i.e., flip the zero to one or vice versa, the magnetic bit has to be coupled to an electro-magnet or to another . If instead one could flip the poles by an electric signal without involving another magnet, a of memories can be envisaged combining the merits of both charge and spin-based devices.

In order the shake a magnet electrically without involving an electro-magnet or another permanent magnet one has to step out of the realm of classical physics and enter the relativistic quantum mechanics. Einstein's relativity allows electrons subject to to order their spins so they become magnetic. The researchers took a permanent magnet GaMnAs and by applying an electric current inside the permanent magnet they created a new internal magnetic cloud, which was able to manipulate the surrounding permanent magnet. The work has been published in the journal Nature Nanotechnology on 2 March 2014.

The observed phenomenon is closely related to the relativistic intrinsic spin Hall effect which Jörg Wunderlich, Jairo Sinova, and Tomas Jungwirth discovered in 2004 following a prediction of Sinova and co-workers in 2003. Since then it has become a text-book demonstration of how electric currents can magnetize any material. "Ten years ago we predicted and discovered how electric currents can generate pure spin-currents through the intrinsic structure of materials. Now we have shown how this effect can be reversed to manipulate magnets by the current-induced polarization. These new phenomena are a major topic of research today since they can lead to new generation of memory devices. Besides our on-going collaborations, this research direction couples very well with on-going experimental research here in Mainz. Being part of this world-leading research and working with superb colleagues is an immense privilege and I am very excited about the future", says Professor Jairo Sinova.

Explore further: Superconducting spintronics pave way for next-generation computing

More information: Kurebayashi, H., Sinova, J. et al., "An antidumping spin–orbit torque originating from the Berry curvature," Nature Nanotechnology, 2 March 2014
DOI: 10.1038/nnano.2014.15

add to favorites email to friend print save as pdf

Related Stories

Controlling magnetism with an electric field

Feb 18, 2014

There is a big effort in industry to produce electrical devices with more and faster memory and logic. Magnetic memory elements, such as in a hard drive, and in the future in what is called MRAM (magnetic random access memory), ...

Controlling magnetic clouds in graphene

Jun 12, 2013

(Phys.org) —Wonder material graphene can be made magnetic and its magnetism switched on and off at the press of a button, opening a new avenue towards electronics with very low energy consumption.

Recommended for you

A new way to make microstructured surfaces

2 hours ago

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Tough foam from tiny sheets

22 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Dr_toad
not rated yet Mar 03, 2014
"In order the shake a magnet electrically without involving an electro-magnet or another permanent magnet one has to step out of the realm of classical physics and enter the relativistic quantum mechanics."

Congratulations on garbling another cut-and-paste. No wonder there's no by line...
Rimino
Mar 03, 2014
This comment has been removed by a moderator.