Recovering valuable substances from wastewater

Mar 21, 2014
Using magnets the superparamagnetic particles in the water can be removed along with their phosphorus load. Credit: Knut Dobberke / Fraunhofer ISC

Phosphorus can be found in fertilizers, drinks and detergents. It accumulates in waterways and pollutes them. For this reason the German Phosphorus Platform has the goal to recover this valuable, but at the same time, harmful element from water. How this can be done will be shown by researchers at the Hannover Trade Fair / IndustrialGreenTec from April 7 – 11 in Hannover where visitors can try out the method for themselves.

Not only plants, but also humans and animals need phosphorus, which is a building block of DNA. Many biological processes in our body can only take place if are also present. But farmers and industrial enterprises use so much of this element that soil is over-fertilized and waterways are contaminated.

This is where the experts of the German Phosphorus Platform DPP come in. As they have made it their aim to recover the phosphorus from the , on the one hand in order to protect the environment and on the other to reutilize this valuable raw material so that no new phosphorus has to be taken from the deposit sites because phosphorus is getting more and more scarce. Although these sites still have enough phosphorus for the next 250 years, very few countries export this element so that if the geopolitical situation were to be become volatile, this would be bad news for supplies. Another problem is that in many mining areas the phosphorus deposits are contaminated with heavy metals. Unfortunately industry is heavily reliant on phosphorus, not just the food and drinks industry, but also the building material and detergents industries as well as semiconductor and lighting manufacturers.

The German Phosphorus Platform was established in November 2013 and operates under the umbrella of the Fraunhofer Project Group Materials Recycling and Resource Strategies IWKS of the Fraunhofer Institute for Silicate Research ISC. "The German Phosphorus Platform is the network for phosphorus" explains Prof. Stefan Gaeth, Executive Manager of the DPP. "It attempts to bring together all the key players who use, recover and need phosphorus around one table".

Trapping phosphorus with magnets

But how can phosphorus be recovered from water? Researchers at the IWKS have come up with an answer. "We add superparamagnetic particles to the water", says Dr. Carsten Gellermann, head of business unit "Slags, sludges, landfill" at the IWKS. This means that if these particles detect a magnetic field they themselves become magnetic. However, if the magnet is removed the particles lose their magnetic property and float freely in the water without adhering to each other.

Researchers have attached bonding sites for phosphorus to these particles so that they fish the phosphate anions out of the water and carry them "piggyback". Using a magnet the particles, along with their phosphorus load, can then be removed from the water, leaving the water clear of . "This way other hazardous substances, such as toxic heavy metals, can also be removed relatively easily with magnets" explains Gellermann.

Explore further: Fertilizer nutrient imbalance to limit food production in Africa

add to favorites email to friend print save as pdf

Related Stories

Phosphorus threatens existence of endangered plants

Nov 20, 2013

Plant species that persist in areas with low availability of phosphorus invest little in sexual reproduction. Due to the increase of phosphorus in their habitats and the fragmentation of low-phosphorus areas, these plant ...

Study pinpoints nutrient behind fresh water algae blooms

Aug 22, 2012

University of Alberta ecologist David Schindler has reviewed data from studies of controlling human-caused algae blooms in lakes and says controlling the input of the nutrient phosphorus is the key to fighting the problem.

Recommended for you

Rolling lab tracks methane to its source

16 minutes ago

McHenry Township, Lycoming County. Equipped with a gray box, a map and an SUV, Thomas Lauvaux and a team from Penn State's Department of Meteorology has been at it for hours, taking measurements and racking ...

What we've learned from the Boxing Day tsunami

17 minutes ago

Much has been learned from the devastating experience of the 2004 Boxing Day tsunami, and it's had lasting benefits for disaster management plans in Australia, according to forensic staff from the University of Adelaide.

UN sends team to clean up Bangladesh oil spill

17 hours ago

The United Nations said Thursday it has sent a team of international experts to Bangladesh to help clean up the world's largest mangrove forest, more than a week after it was hit by a huge oil spill.

How will climate change transform agriculture?

17 hours ago

Climate change impacts will require major but very uncertain transformations of global agriculture systems by mid-century, according to new research from the International Institute for Applied Systems Analysis.

Report: Radiation leak at nuclear dump was small

17 hours ago

A final report by independent researchers shows the radiation leak from the federal government's underground nuclear waste repository in southern New Mexico was small and localized.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.