Researchers show polymerized nanocubes form complex structures

Mar 28, 2014 by Kerry Gibson
Using numerical simulations, Ames Lab researchers found that “hairy” (f-star) or DNA grafted on nanocubes provided a general framework to direct the self-assembly into phases with crystalline, liquid crystalline, rotator, or noncrystalline phases with both long-range positional and orientational order.

(Phys.org) —Nanoparticles assembled in new ways hold the promise of a wave of new high-tech materials that could offer high strength, enhanced magnetic properties, light reflectivity or absorption, use as catalysts and much more. Scientists at the U.S. Department of Energy's Ames Laboratory have developed a theoretical model to explore the effect of polymer coatings, including DNA, for self-assembly of nanocubes into so-called superlattices.

What makes the work by Ames Laboratory physicist Alex Travesset and graduate assistant Chris Knorowski significant is that they have characterized how these nanocubes form crystalline and liquid . Their work was published in the Dec. 10 issue of the Journal of the American Chemical Society and mentioned in an Editor's Choice article in the January 31 issue of Science.

"Spherical nanoparticles, are isotropic so they can align in any direction," Travesset explains. "Nanocubes are different. They are anisotropic, so they display orientational order. They will only stack together if the faces orient in certain ways."

"From a more applied point of view, cubes can pack together more efficiently than spheres; in configurations that do not leave any gaps," he adds, "so they are of interest in areas such as catalysis where you want to maximize contact area."

To date scientists had only considered theoretical systems that consist of hard nanocubes. However, by coating nanocubes with strands of polymer, the structures that form are bound together so that they can be extracted and studied in laboratory environments. The nanocubes can be metallic, gold or silver, or made of semiconducting material.

Travesset's theoretical model uses both a general polymer and DNA. While both resulted in assembly of nanocubes into complex crystalline structures, the DNA system allows control of self-assembly by hybridization of complementary base pairs.

"With DNA, you can encode information about which cubes are going to assemble with which other cubes," Travesset said. "It gives you a more precise way to target relevant self-assembled structures."

"Because the system can be polymerized in water, the assembled structure can be extracted and used in dry environments," Travesset said. "And these complex structures provide much more opportunity for applications and systems than simple hard cubes allow. We hope these systems will lead to further experimentation."

Explore further: Nanoparticle networks' design enhanced by theory

add to favorites email to friend print save as pdf

Related Stories

Silver nanocubes make super light absorbers

Dec 06, 2012

Microscopic metallic cubes could unleash the enormous potential of metamaterials to absorb light, leading to more efficient and cost-effective large-area absorbers for sensors or solar cells, Duke University ...

Nanoparticle networks' design enhanced by theory

Feb 27, 2014

For close to two decades, Cornell scientists have developed processes for using polymers to self-assemble inorganic nanoparticles into porous structures that could revolutionize electronics, energy and more.

Shape matters in the case of cobalt nanoparticles

Jun 17, 2009

Shape is turning out to be a particularly important feature of some commercially important nanoparticles—but in subtle ways. New studies* by scientists at the National Institute for Standards and Technology ...

Recommended for you

Tiny carbon nanotube pores make big impact

Oct 29, 2014

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

An unlikely use for diamonds

Oct 27, 2014

Tiny diamonds are providing scientists with new possibilities for accurate measurements of processes inside living cells with potential to improve drug delivery and cancer therapeutics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.