Physicists split and collide ultracold atom clouds (w/ Video)

Mar 31, 2014
Physicists split and collide ultracold atom clouds

Physicists at New Zealand's University of Otago have pushed the frontiers of quantum technology by developing a steerable 'optical tweezers' unit that uses intense laser beams to precisely split minute clouds of ultracold atoms and to smash them together.

The Otago researchers' feat is set to enhance efforts to understand the mysterious ways that interact at temperatures of less than a millionth of a degree above absolute zero. Its potential applications include new tools for probing microscopic structures or for sensors that can map minute variations in magnetic fields, says lead researcher Dr Niels Kjaergaard.

A description of their cutting-edge system is published in the April 1 issue of the US journal Optics Letters. It details an experiment in which the researchers used the technology to split a single ultracold cloud of sequentially into 32 daughter clouds, spreading them out over nearly half a centimetre.

"This sort of precise control of these atoms is like being able to pull a delicate snowflake into two clean halves with your bare hands. It's quite remarkable that we are able to manipulate such minute and fragile samples while moving them such a comparatively large distance," Dr Kjaergaard says.

The experimental setup involves steering horizontal and vertical laser beams around through their interaction with precisely controlled travelling . These steerable confine and move the atoms. As well as splitting atom clouds, the system allows them to be collided.

This video is not supported by your browser at this time.
Physicists from New Zealands' University of Otago have pushed the frontiers of quantum technology by developing a steerable 'optical tweezers' unit that uses intense laser beams to precisely split minute clouds of ultracold atoms. Here the researchers use the technology to split a single ultracold cloud of rubidium atoms sequentially into 32 daughter clouds, spreading them out over nearly half a centimetre. Credit: Niels Kjaergaard

"Tongue-in-cheek, we like to refer to our setup as the 'Littlest Hadron Collider'. In some ways it's the complete opposite of what is the world's largest and most powerful particle collider, because instead of using extreme acceleration, we smash our atom clouds together at a pedestrian pace of up to a metre per second," Kjaergaard says.

The steerable optical tweezers unit was constructed as part of Kris Roberts' Honour's thesis project in Dr Kjaergaard's research group at the Jack Dodd Centre for Quantum Technology at the Department of Physics, while the control system for the acoustic waves was built by Master's student Thomas McKellar.

This video is not supported by your browser at this time.
Physicists from New Zealands' University of Otago have pushed the frontiers of quantum technology by developing a steerable 'optical tweezers' unit that uses intense laser beams to precisely split a cloud of ultracold rubidium atoms in two and then collide the halves together at a pedestrian pace. Credit: Niels Kjaergaard

"For researchers who are still students, these are quite notable achievements and I'm very proud of their work. It demonstrates the fantastic training opportunities that Otago can offer in its Physics programme," Dr Kjaergaard says.

Explore further: Teaching matter waves new tricks: Making magnets with ultracold atoms

add to favorites email to friend print save as pdf

Related Stories

Novel beams made of twisted atoms

Aug 07, 2013

Physicists have, for the first time, now built a theoretical construct of beams made of twisted atoms. These findings by Armen Hayrapetyan and colleagues at Ruprecht-Karls-University Heidelberg in Germany ...

Improving measurements by reducing quantum noise

Jun 27, 2013

If you want to measure something very precisely, such as slight variations of a length, then you are very likely to use light waves. However, many effects, such as variations of gravity, or surface forces, ...

Cold atoms for quantum technology

May 08, 2013

Researchers from the National Physical Laboratory, University of Strathclyde, Imperial College London and University of Glasgow have developed a portable way to produce ultracold atoms for quantum technology ...

Quantum chaos in ultracold gas discovered

Mar 12, 2014

A team of University of Innsbruck researchers discovered that even simple systems, such as neutral atoms, can possess chaotic behavior, which can be revealed using the tools of quantum mechanics. The ground-breaking ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

4 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

4 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

5 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

Quantum holograms as atomic scale memory keepsake

5 hours ago

Russian scientists have developed a theoretical model of quantum memory for light, adapting the concept of a hologram to a quantum system. These findings from Anton Vetlugin and Ivan Sokolov from St. Petersburg ...

User comments : 0