'Photon glue' enables a new quantum mechanical state

Mar 03, 2014 by Nicole Casal Moore
In an optical cavity -- a filament lined with mirrors -- researchers have used light to bind together quantum mechanical states of two disparate materials. The result could one day enable more robust, efficient solar cells and lighting solutions. Credit: Tal Galfsky, CUNY

(Phys.org) —Like a spring connecting two swings, light can act as photon glue that binds together the quantum mechanical properties of two vastly different materials.

The effect could harness the most useful characteristics from each material for hybrid and high efficiency lighting, among other applications.

Researchers at the University of Michigan and Queens College, City University of New York, used light to create links between organic and inorganic semiconductors in an —a mirror-lined nanoscale filament about 1/1,000th the width of a hair.

Semiconductors are whose electrical conductivity can be adjusted by adding impurities, known as dopant atoms. They're used in all electronic devices, including cell phones and laptops, and also in solar cells and light-emitting diodes.

Organic semiconductors are made of carbon-rich compounds that don't necessarily come from biological sources, but resemble them. They are newer to the market than their inorganic counterparts such as silicon. But they are finding widespread applications in smart phone displays and room lighting. Organics hold promise to be flexible and inexpensive, perhaps even deployed on large plastic rolls.

"What we've done is taken the excited states of two principally different materials and combined them into a new quantum mechanical state that shares their best properties," said Stephen Forrest, professor of physics and materials science and also the William Gould Dow Collegiate Professor of Electrical Engineering.

This new state demonstrates stronger light absorption and possibly enhanced "nonlinear" optical properties useful in optical switching, said Vinod Menon, associate professor of physics at Queens College.

"Developing engineered nonlinear optical materials with properties that surpass naturally occurring materials is important for developing next generation photonic technologies that rely on the quantum properties of light," Menon said. "For example, one could develop an optical switch that uses one photon to turn on or off the path of a second photon. This is basically a light switch that regulates light, one photon at a time—an important building block for quantum communication and computing."

To demonstrate the effect, the researchers started with an inorganic semiconductor—zinc oxide—and made it into nanowires. Then they surrounded it with an organic material—naphthalene tetracarboxylic dianhydride, or NTCDA.

"We chose these two materials because their excited states would be at nearly the same energies. That is, they are in resonance with one another. And we then sandwiched them between two mirrors to form an optical cavity that traps photons, also at the same energy as the excited states," Forrest said.

"The result was a third, unique quantum state that is a combination of the photon, the of the inorganic semiconductor and the excited state in the organic semiconductor. That sounds hard and it is."

He likened the construction to two swings connected by a spring. The swings in this case are excitons, or electronically attractive electron-hole pairs. An electron is a negatively charged subatomic particle and a "hole" in this context is the absence of an electron. In a semiconducting material, a hole carries a positive charge.

In the optical cavity, the photon essentially "glues" together all these quantum mechanical states, forming a unique and potentially useful new state called a polariton that can efficiently transfer energy from one material to another, Forrest said.

"In that new state lies their magic," he said. "Uses in solar energy conversion, emission and optical switching are just a few examples of applications that can benefit.

Explore further: Seeing a photon without absorbing it

More information: Michael Slootsky, Xiaoze Liu, Vinod M. Menon, and Stephen R. Forrest. "Room Temperature Frenkel-Wannier-Mott Hybridization of Degenerate Excitons in a Strongly Coupled Microcavity." Phys. Rev. Lett. 112, 076401 – Published 18 February 2014

add to favorites email to friend print save as pdf

Related Stories

Engineering researchers achieve organic laser breakthrough

Jun 21, 2010

(PhysOrg.com) -- Researchers at the University of Michigan have achieved a long sought-after optics phenomenon that could lead to more efficient and flexible lasers for telecommunications and quantum computing applications, ...

Seeing a photon without absorbing it

Nov 14, 2013

Light is of fundamental importance. It allows us to see the world around us and record pictures of our environment. It enables communication over long distances through optical fibers. All current methods ...

Recommended for you

Flying qubits make for a highly resilient quantum memory

7 hours ago

(Phys.org) —In a quantum memory, the basic unit of data storage is the qubit. Because a qubit can exist in a superposition state of both "1" and "0" at the same time, it can process much more information ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.