First phononic crystal that can be altered in real time

Mar 31, 2014
This is an acoustic metadevice capable of manipulating the acoustic space and controlling the propagation of waves. Credit: (c) Mihai Caleap, University of Bristol

Using an acoustic metadevice that can influence the acoustic space and can control any of the ways in which waves travel, engineers have demonstrated, for the first time, that it is possible to dynamically alter the geometry of a three-dimensional colloidal crystal in real time.

The designed in the study, called metamaterials, are artificially structured materials that extend the properties of existing naturally occurring materials and compounds. The research by academics from the University of Bristol's Department of Mechanical Engineering is published online this week in PNAS (Proceedings of the National Academy of Sciences).

Dr Mihai Caleap, Research Associate in the Department of Mechanical Engineering, said: "We have been working on systems that are reconfigurable in real time with a view to creating genuinely active metamaterials.

"Such materials will allow researchers to gain unprecedented control over a range of optical and acoustic wave phenomena. To date, whilst numerous examples of metamaterials now exist, none are reconfigurable in three-dimensions."

The researchers used acoustic assembly to trap a suspension of microspheres in patterns resembling crystal lattices. The study showed the experimental realisation of a three-dimensional colloidal crystal that is reconfigurable in and that has the ability to rapidly alter its acoustic filtering characteristics.

This is an author's impression of an acoustic micro-cloak made of an array of spherical particles. Credit: (c) Mihai Caleap, University of Bristol

Dynamically reconfigurable based devices with optical or acoustic wavelengths from ten microns to ten cm could have a wide range of applications. In optics it could lead to new beam deflectors or filters for terahertz imaging and in acoustics it might be possible to create acoustic barriers that can be optimised depending on the changing nature of the incident sound. Further applications in reconfigurable cloaks and lenses are also now conceivable.

Bruce Drinkwater, Professor of Ultrasonics in the Department of Mechanical Engineering and co-author, said: "Our reconfigurable acoustic assembly method is an important step as it has clear advantages over other possible approaches, for example optical trapping and self-assembly.

This is an experimental micrograph of 90 µm polystyrene spheres in aqueous solution. Credit: (c) Mihai Caleap, University of Bristol

"In particular, acoustic assembly is scalable with wavelength from microns to metres. The method will work on a vast range of materials, such as nearly all solid-fluid combinations, it will also enable almost any geometry to be assembled and it is cheap and easy to integrate with other systems."

Explore further: Scientists twist sound with metamaterials

More information: Acoustically trapped colloidal crystals that are reconfigurable in real-time, Mihai Caleap and Bruce Drinkwater, PNAS, online early edition the week of March 31, 2014. www.pnas.org/cgi/doi/10.1073/pnas.1323048111

add to favorites email to friend print save as pdf

Related Stories

Scientists twist sound with metamaterials

Feb 25, 2014

A Chinese-U.S. research team is exploring the use of metamaterials—artificial materials engineered to have exotic properties not found in nature—to create devices that manipulate sound in versatile and ...

Sonic lasso catches cells

Apr 03, 2013

(Phys.org) —Academics have demonstrated for the first time that a "sonic lasso" can be used to grip microscopic objects, such as cells, and move them about.

Designing an acoustic diode

Nov 01, 2013

Most people know about ultrasound through its role in prenatal imaging: those grainy, grey outlines of junior constructed from reflected sound waves. A new technology called an "acoustic diode," envisioned ...

Recommended for you

New approach to form non-equilibrium structures

16 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

18 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

22 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

22 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

Jul 23, 2014

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0