Researchers patent process that binds organic compounds to metal surfaces

March 25, 2014 by Anne Craig

Queen's University researchers Cathleen Crudden and Hugh Horton (Chemistry), along with students, postdoctoral fellows and other collaborators have developed a new process that allows organic compounds to bind to metal surfaces. This cutting-edge technology is now being patented and commercialized by PARTEQ and Green Centre Canada.

"Imagine pouring onto a and expecting it to stay," says Dr. Horton. "We have created a bond through a chemical absorption process that would allow that to happen."

The first example of the formation of organic monolayers (single molecule-thick coatings) on metals was published about 30 years ago and ignited huge interest in the scientific community. The technique forms the basis for a wide range of biosensing applications using modified metal surfaces. However these coatings lack robustness and are sensitive even to exposure to air, greatly limiting their applications and making the technique expensive.

Drs. Crudden and Horton are the first in the world to develop a viable alternative to this initial process. In their strategy, the bond between the metal and the organic occurs through carbon instead of sulfur, which gives much greater strength and resistance to oxidation.

Common, everyday uses of this technology could include applying organic coatings to automotive surfaces that would protect them from corrosion and decrease friction. The use of these coatings to improve commercial biosensors for medical diagnostics is already underway.

The research was published in Nature Chemistry.

Explore further: Corrosion-resistant nanocoating for metals could replace toxic chromium

More information: "Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold." Cathleen M. Crudden, et al. Nature Chemistry (2014) DOI: 10.1038/nchem.1891. Received 08 November 2013 Accepted 11 February 2014 Published online 23 March 2014

Related Stories

Researchers stumble on colorful discovery

July 21, 2011

Modified metals that change colour in the presence of particular gases could warn consumers if packaged food has been exposed to air or if there's a carbon monoxide leak at home. This finding could potentially influence the ...

Graphene is thinnest known anti-corrosion coating

February 22, 2012

New research has established the "miracle material" called graphene as the world's thinnest known coating for protecting metals against corrosion. Their study on this potential new use of graphene appears in ACS Nano.

Polymer coatings based on molecular structures

December 18, 2013

A novel method developed by researchers from Karlsruhe Institute of Technology (KIT) and Jacobs University Bremen enables manufacturing of polymer layers with tailor-made properties and multiple functions: A stable porous ...

Recommended for you

Electric-car battery materials could harm key soil bacteria

February 10, 2016

The growing popularity of battery-powered cars could help reduce greenhouse gas emissions, but they are not entirely Earth friendly. Problems can creep in when these batteries are disposed of. Scientists, in a new study in ...

Hydrogels can put stem cells to sleep

February 10, 2016

Unlike normal cells, stem cells are pluripotent—they can become any cell type, which makes them powerful potential treatments for diseases such as diabetes, leukemia and age-related blindness. However, maintaining this ...

Room-temperature lithium metal battery closer to reality

February 4, 2016

Rechargeable lithium metal batteries have been known for four decades to offer energy storage capabilities far superior to today's workhorse lithium-ion technology that powers our smartphones and laptops. But these batteries ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.