Researchers patent process that binds organic compounds to metal surfaces

Mar 25, 2014 by Anne Craig

Queen's University researchers Cathleen Crudden and Hugh Horton (Chemistry), along with students, postdoctoral fellows and other collaborators have developed a new process that allows organic compounds to bind to metal surfaces. This cutting-edge technology is now being patented and commercialized by PARTEQ and Green Centre Canada.

"Imagine pouring onto a and expecting it to stay," says Dr. Horton. "We have created a bond through a chemical absorption process that would allow that to happen."

The first example of the formation of organic monolayers (single molecule-thick coatings) on metals was published about 30 years ago and ignited huge interest in the scientific community. The technique forms the basis for a wide range of biosensing applications using modified metal surfaces. However these coatings lack robustness and are sensitive even to exposure to air, greatly limiting their applications and making the technique expensive.

Drs. Crudden and Horton are the first in the world to develop a viable alternative to this initial process. In their strategy, the bond between the metal and the organic occurs through carbon instead of sulfur, which gives much greater strength and resistance to oxidation.

Common, everyday uses of this technology could include applying organic coatings to automotive surfaces that would protect them from corrosion and decrease friction. The use of these coatings to improve commercial biosensors for medical diagnostics is already underway.

The research was published in Nature Chemistry.

Explore further: Polymer coatings based on molecular structures

More information: "Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold." Cathleen M. Crudden, et al. Nature Chemistry (2014) DOI: 10.1038/nchem.1891. Received 08 November 2013 Accepted 11 February 2014 Published online 23 March 2014

add to favorites email to friend print save as pdf

Related Stories

Graphene is thinnest known anti-corrosion coating

Feb 22, 2012

New research has established the "miracle material" called graphene as the world's thinnest known coating for protecting metals against corrosion. Their study on this potential new use of graphene appears ...

Researchers stumble on colorful discovery

Jul 21, 2011

Modified metals that change colour in the presence of particular gases could warn consumers if packaged food has been exposed to air or if there's a carbon monoxide leak at home. This finding could potentially ...

Polymer coatings based on molecular structures

Dec 18, 2013

A novel method developed by researchers from Karlsruhe Institute of Technology (KIT) and Jacobs University Bremen enables manufacturing of polymer layers with tailor-made properties and multiple functions: ...

Recommended for you

Nature inspires a greener way to make colorful plastics

16 hours ago

Long before humans figured out how to create colors, nature had already perfected the process—think stunning, bright butterfly wings of many different hues, for example. Now scientists are tapping into ...

New catalyst converts carbon dioxide to fuel

18 hours ago

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing ...

Building the ideal rest stop for protons

Jul 29, 2014

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

Jul 29, 2014

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0