Ocean food web is key in the global carbon cycle

Mar 11, 2014 by Julie Cohen
This graphic shows the global carbon budget with black arrows and values reflecting the natural carbon cycle and red the anthropogenic perturbation. Credit: 2007 IPCC report

Nothing dies of old age in the ocean. Everything gets eaten and all that remains of anything is waste. But that waste is pure gold to oceanographer David Siegel, director of the Earth Research Institute at UC Santa Barbara.

In a study of the ocean's role in the , Siegel and his colleagues used those nuggets to their advantage. They incorporated the lifecycle of phytoplankton and zooplankton—small, often microscopic animals at the bottom of the food chain —into a novel mechanistic model for assessing the global ocean export. Their findings appear online in the journal Global Biogeochemical Cycles.

The researchers used satellite observations including determinations of net primary production (NPP)—the net production of from aqueous carbon dioxide (CO2) by phytoplankton—to drive their food-web-based model. The scientists focused on the ocean's biological pump, which exports organic carbon from the euphotic zone—the well-lit, upper ocean—through sinking particulate matter, largely from zooplankton feces and aggregates of algae. Once these leave the euphotic zone, sinking into the ocean depths, the carbon can be sequestered for a season or for centuries.

"What we've done here is create the first step toward monitoring the strength and efficiency of the biological pump using ," said Siegel, who is also a professor of marine science in UCSB's Department of Geography. "The approach is unique in that previous ways have been empirical without considering the dynamics of the ." The space/time patterns created by those empirical approaches are inconsistent with how oceanographers think the oceans should work, he noted.

Shown are the links among the ocean's biological pump and pelagic food web. Light blue waters are the euphotic zone, while the darker blue waters represent the twilight zone. Credit: US Joint Global Ocean Flux Study

Carbon is present in the atmosphere and is stored in soils, oceans and the Earth's crust. Any movement of carbon between—or in the case of the ocean, within—these reservoirs is called a flux. According to the researchers, oceans are a central component in the cycle through their storage, transport and transformations of carbon constituents.

"Quantifying this carbon flux is critical for predicting the atmosphere's response to changing climates," Siegel said. "By analyzing the scattering signals that we got from satellite measurements of the ocean's color, we were able to develop techniques to calculate how much of the biomass occurs in very large or very small particles."

Their results predict a mean global carbon export flux of 6 petagrams (Pg) per year. Also known as a gigaton, a petagram is equal to one quadrillion (1015) grams. This is a huge amount, roughly equivalent to the annual global emissions of fossil fuel. At present, fossil fuel combustion represents a flux to the atmosphere of approximately 9 Pg per year.

Global mean determinations of the efficiency of the biological pump from (left) the present food-web model and (right) an empirical method that models export efficiency as a function of the sea surface temperature (SST). Credit: UCSB

"It matters how big and small the plankton are, and it matters what the energy flows are in the food web," Siegel said. "This is so simple. It's really who eats whom but also having an idea of the biomasses and productivity of each. So we worked out these advanced ways of determining NPP, phytoplankton biomass and the size structure to formulate mass budgets, all derived from satellite data."

The researchers are taking their model one step further by planning a major field program designed to better understand the states in which the biological pump operates. "Understanding the is critical," Siegel concluded. "We need to understand where carbon goes, how much of it goes into the organic matter, how that affects the air-sea exchanges of CO2 and what happens to fossil fuel we have emitted from our tailpipes."

Explore further: Experiments open window on landscape formation

Related Stories

Carbon-eaters on the Black sea

Aug 03, 2012

(Phys.org) -- This brilliant cyan pattern scattered across the surface of the Black Sea is a bloom of microscopic phytoplankton. The multitude of single-celled algae in this image are most likely coccolithophores, ...

Recommended for you

Experiments open window on landscape formation

13 hours ago

University of Oregon geologists have seen ridges and valleys form in real time and—even though the work was a fast-forwarded operation done in a laboratory setting—they now have an idea of how climate ...

NASA image: Canadian wildfires continue

13 hours ago

Canada is reeling from an early fire season this year as dozens of fires ravage at least three provinces of the country. All of the following reports are as of July 2, 2015.

The very hungry sea anemone

14 hours ago

The surprising culinary preferences of an abyssal sea anemone have been unveiled by a team of scientists from the National Oceanography Centre (NOC).

How Virginia is preparing for the next quake

18 hours ago

The 5.8 magnitude earthquake that struck the commonwealth in 2011 was a wake-up call for many Virginians. Originating deep under Louisa County, the quake was felt as far north as Canada and caused significant ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.