Newly discovered catalyst could lead to the low-cost production of clean methanol

Mar 02, 2014
Scientists have created a new nickel-gallium (Ni5Ga3) catalyst that synthesizes methanol (MeOH), a key ingredient in paints and plastics, using carbon dioxide (CO2) and hydrogen (H2). The goal is to create clean methane using hydrogen produced by wind or solar power and CO2 emissions from power plants. Credit: Jens Hummelshoj/SLAC

An international research team has discovered a potentially clean, low-cost way to convert carbon dioxide into methanol, a key ingredient in the production of plastics, adhesives and solvents, and a promising fuel for transportation.

Scientists from Stanford University, SLAC National Accelerator Laboratory and the Technical University of Denmark combined theory and experimentation to identify a new nickel-gallium catalyst that converts hydrogen and into methanol with fewer side-products than the conventional catalyst. The results are published in the March 2 online edition of the journal Nature Chemistry.

"Methanol is processed in huge factories at very high pressures using hydrogen, carbon dioxide and carbon monoxide from natural gas," said study lead author Felix Studt, a staff scientist at SLAC. "We are looking for materials than can make methanol from clean sources under low-pressure conditions, while generating low amounts of carbon monoxide."

The ultimate goal is to develop a large-scale manufacturing process that is nonpolluting and carbon neutral using clean hydrogen, the authors said.

"Imagine if you could synthesize methanol using hydrogen from renewable sources, such as water split by sunlight, and carbon dioxide captured from power plants and other industrial smokestacks," said co-author Jens Nørskov, a professor of chemical engineering at Stanford. "Eventually we would also like to make higher alcohols, such as ethanol and propanol, which, unlike methanol, can be directly added to gasoline today."

Industrial methanol

Worldwide, about 65 million metric tons of methanol are produced each year for use in the manufacture of paints, polymers, glues and other products. In a typical methanol plant, natural gas and water are converted to synthesis gas ("syngas"), which consists of carbon monoxide, carbon dioxide and hydrogen. The syngas is then converted into methanol in a high-pressure process using a catalyst made of copper, zinc and aluminum.

"We spent a lot of time studying methanol synthesis and the industrial process," Studt said. "It took us about three years to figure out how the process works and to identify the active sites on the copper-zinc-aluminum catalyst that synthesize methanol."

Once he and his colleagues understood methanol synthesis at the molecular level, they began the hunt for a new catalyst capable of synthesizing methanol at low pressures using only hydrogen and carbon dioxide. Instead of testing a variety of compounds in the lab, Studt searched for promising catalysts in a massive computerized database that he and co-author Frank Abild-Pedersen developed at SLAC.

"The technique is known as computational materials design," explained Nørskov, the director of the SUNCAT Center for Interface Science and Catalysis at Stanford and SLAC. "You get ideas for new functional materials based entirely on computer calculations. There is no trial-and-error in the lab first. You use your insight and enormous computer power to identify new and interesting materials, which can then be tested experimentally."

Studt compared the copper-zinc-aluminum catalyst with thousands of other materials in the database. The most promising candidate turned out to be a little-known compound called nickel-gallium.

"Once we got the name of the compound out of the computer, someone still had to test it," Nørskov said. "We don't do lab experiments here, so we have to have a good experimental partner."

Nørskov turned to a research group at the Technical University of Denmark led by co-author Ib Chorkendorff. First, the Danish team carried out the task of synthesizing nickel and gallium into a solid catalyst. Then the scientists conducted a series of experiments to see if the new catalyst could actually produce methanol at ordinary room pressure.

The lab tests confirmed that the computer had made the right choice. At high temperatures, nickel-gallium produced more methanol than the conventional copper-zinc-aluminum catalyst, and considerably less of the carbon monoxide byproduct.

"You want to make methanol, not ," Chorkendorff said. "You also want a catalyst that's stable and doesn't decompose. The lab tests showed that nickel-gallium is, in fact, a very stable solid."

While these results show promise, a great deal of work lies ahead. "We'd like to make the catalyst a little more clean," Chorkendorff added. "If it contains just a few nanoparticles of pure nickel, the output drops quite a bit, because pure nickel is lousy at synthesizing methanol. In fact, it makes all sorts of chemical byproducts that you don't want."

Nickel is relatively abundant, and gallium, although more expensive, is widely used in the electronics industry. This suggests that the new could eventually be scaled up for industrial use, according to the authors. But to make synthesis a truly carbon-neutral process will require overcoming many additional hurdles, they noted.

Explore further: New antimicrobial edible films that increase the lifespan of cheese

More information: Nature Chemistry DOI: 10.1038/nchem.1873

add to favorites email to friend print save as pdf

Related Stories

Study cracks a secret of methanol production

May 24, 2012

(Phys.org) -- What’s the best way to make methanol? The question is more pressing than it sounds. Not only is methanol an important industrial chemical – some 50 million tons are used each year to ...

New method for producing clean hydrogen

May 21, 2013

Duke University engineers have developed a novel method for producing clean hydrogen, which could prove essential to weaning society off of fossil fuels and their environmental implications.

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

DrJimby
3 / 5 (1) Mar 03, 2014
Sadly, this article shows the complete lack of knowledge of most academics concerning the economics of chemical production, including methanol. Methanol is one of the lowest-cost chemicals produced today, and is made at very modest pressures (50-100 bar). The pressure is used to make the rates fast, so that the capital costs are low. A low-pressure process is a solution to a non-problem, and would make the cost of the methanol very high. In addition, the cost of production of a chemical decreases with the scale of the plant to the 0.6 power, so small, distributed methanol plants would be severely disadvantaged over large, integrated plants. Nothing would need to be invented to do what the authors propose doing today, if we wanted. Water can be split with high efficiency using renewable energy, and can be used to produce methanol using existing commercial processes. Solar hydrogen is very expensive, so this method is not used today.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.