Movement in the womb sparks specific genes to build a healthy skeleton

Mar 07, 2014 by Thomas Deane

(Phys.org) —Zoologists and bioengineers from Trinity College Dublin have identified over 1,000 genes whose responses change markedly when embryos are not able to move freely in the womb. The discovery will help scientists better understand how important tissues are programmed to develop in our bodies, which could in turn suggest how stem cells can be primed for use in tissue engineering and regenerative therapies. 

The collaborative research conducted in the School of Natural Sciences and Trinity Centre for Bioengineering is addressing how embryonic movement influences bone and joint . This research also furthers understanding of the consequences of reduced movement and shows how we might guide desired differentiation of bone and cartilage from stem cells. 

"Why do babies move about so much while they are developing in the womb, particularly flexing their arms and legs? We know that if they don't move enough, they are born with skeletal problems such as thin, fragile bones," said Developmental Biologist and Associate Professor in Zoology, Paula Murphy, who is the senior author of the study. 

"Highly regulated signalling systems are needed for Mother Nature to follow the complex 'recipes' of genetic expression that enable the development of normal skeletons. What often surprises people is that mechanical signals also feed in to these signalling systems, and it is the movement of an embryo that sparks these." 

This video is not supported by your browser at this time.
The video shows a 3D image of cartilage forming the future skeleton after 12 days of development (mouse embryo, 12mm long).

By studying how animals move and develop, the zoologists and bioengineers have pin-pointed which steps during skeleton formation require stimulation from movement. Additionally, by examining the patterns of all the in the genome, they have shown which specific genes and molecules are stimulated by movement. 

Very little is known about how the are integrated into the biochemical signalling pathways. That could soon change, however, as these researchers home in on the 1,000-plus genes whose responses changed in mouse embryos that lacked muscles and therefore did not kick during development.

The research, just published in the leading journal BMC Genomics, featured Research Fellow at Trinity, Rebecca Rolfe, as the first author. It highlighted a number of genes already known to encode regulatory molecules that guide developmental decisions in the embryo. It also highlighted genes that are involved in controlling cell shape changes and in aiding cell-to-cell communication. In particular, the research highlighted the 'Wnt' pathway, which passes signals from the exterior to the interior of specific cells, as a potential point of integration of mechanical and molecular signalling. 

"If we can better understand the signalling processes involved, we might guide development of stable bone and cartilage tissues for use in regenerative therapies. We are now working to fill in the gaps in our knowledge around the combinations of mechanical and molecular signals that are needed to guide differentiation of for this purpose," added Associate Professor Murphy.

Explore further: The developmental on-switch

More information: See the full study here: www.biomedcentral.com/1471-2164/15/48

add to favorites email to friend print save as pdf

Related Stories

The developmental on-switch

Aug 19, 2013

German researchers have demonstrated for the first time why the molecular cocktail responsible for generating stem cells works. Sox2 and Oct4 are proteins whose effect on cells resembles that of an eraser: ...

Discovery of a 'conductor' in muscle development

Feb 25, 2014

A team led by Jean-François Côté, researcher at the IRCM, identified a ''conductor'' in the development of muscle tissue. The discovery, published online yesterday by the scientific journal Proceedings of the National Ac ...

Signal gradients in 3-D guide stem cell behavior

Sep 18, 2013

Scientists know that physical and biochemical signals can guide cells to make, for example, muscle, blood vessels or bone. But the exact recipes to produce the desired tissues have proved elusive.

Recommended for you

Getting a jump on plant-fungal interactions

13 hours ago

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

The microbes make the sake brewery

Jul 24, 2014

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

User comments : 0