Microwave radar monitors sliding slopes

Mar 10, 2014

If entire mountain slopes start to slide, danger threatens. It is not always easy to predict and monitor these mass movements. In an international project, scientists at the Technische Universität Darmstadt, Germany, combined numerical models with microwave radar systems in Northern Tyrol—with promising results.

The "Steinlehnen" slope in Northern Tyrol (Austria) started to move in 2003. Rockfalls threatened people, streets and buildings. Meanwhile, peace has returned; although the slope is merely "creeping", Steinlehnen has become an interesting research object for scientists in recent years.

Professor Andreas Eichhorn of the Geodetic Measurement Systems and Sensors branch in the Department of Civil and Environmental Engineering at the Technical University of Darmstadt initiated the interdisciplinary project KASIP (Knowledge-based Alarm System with Identified Deformation Predictor) together with the Technical University of Vienna and the "alpS" research institute; the goal was to combine metrological observations of the slope with computer models.

"A slope is tremendously complex," says Eichhorn. It can be difficult to determine exactly how a mountain slope is composed and how a failure mechanism works in detail. Therefore, scientists will not be able to rely solely on computer-based models to predict mass movements in the future; they also need efficient and precise surveillance and monitoring systems that are as comprehensive as possible.

To do this, Eichhorn and his team tested different methods at Steinlehnen. "Installing sensors in highly active areas of the mountain is very dangerous," explains Eichhorn. "We were looking for a method that, among other things, makes non-contact observation possible." In the end, one method proved to be particularly suitable; although its basic physical principle has been used in geodesy for a long time, it was never used for the monitoring of slopes. This method uses a of the Department of Physical Geodesy and Satellite Geodesy of the TU Darmstadt (Professor Matthias Becker), which was applied prototypically by Eichhorn's team of Darmstadt scientists .

Here, the entire surface of a slope is "shot" with microwaves that are reflected back from the surface and can then be analyzed. By comparing different measurements, the scientists can document changes of just a few millimeters. Accumulations or erosion of rock material, or even the beginning of a major landslide, can thus be recorded, Eichhorn says. In contrast to methods that scan the surface with laser light, for example, microwaves deliver much less disturbance. "A laser has too much noise," says Eichhorn. In her dissertation, doctoral candidate Sabine Rödelsperger developed an evaluation strategy for interpreting the measured data; among other things, this also makes it possible to remove meteorological disturbances and to arrive at meaningful 3D images of the slope.

During the KASIP experiments, the geodesists from Darmstadt, together with their colleagues from the field of geophysics, achieved many important insights for the more accurate interpretation of observed geophysical phenomena and the correlation between the weather and the sliding behavior of the slope. But the research also has practical benefits, as Eichhorn explains: "Solely in terms of technology, it is possible to continuously monitor a large-scale critical slope in high-resolution. Accelerations – early indicators of the possible slipping of large masses – can be detected, and it can be determined when the slope stops moving."

Microwave radar devices are still very expensive, but the method already has potential as a good early warning system: "If you would observe critical slopes with them, you could reliably determine exactly where something is happening," says Eichhorn. "Then less expensive measurement systems and their sensors could be specifically applied there."

Explore further: A protein-production tale of the tape: Separating poly(A)-tail length from translational efficiency

add to favorites email to friend print save as pdf

Related Stories

Monitoring system warns of slippery slopes

Apr 07, 2011

Doren in the Austrian Bregenzerwald, February 2007: a slope 650 meters long breaks, resulting in a massive slide into the valley below. The nearest residential buildings are very close to the 70-meter-high ...

Charting the slopes of sediment transport

Jan 29, 2014

In the Earth Surface Dynamics Lab at the California Institute of Technology (Caltech) the behavior of rivers is modeled through the use of artificial rivers—flumes—through which water can be pumped at ...

Recommended for you

Fires in Central Africa During July 2014

5 hours ago

Hundreds of fires covered central Africa in mid-July 2014, as the annual fire season continues across the region. Multiple red hotspots, which indicate areas of increased temperatures, are heavily sprinkled ...

NASA's HS3 mission spotlight: The HIRAD instrument

15 hours ago

The Hurricane Imaging Radiometer, known as HIRAD, will fly aboard one of two unmanned Global Hawk aircraft during NASA's Hurricane Severe Storm Sentinel or HS3 mission from Wallops beginning August 26 through ...

Fires in the Northern Territories July 2014

Jul 23, 2014

Environment Canada has issued a high health risk warning for Yellowknife and surrounding area because of heavy smoke in the region due to forest fires. In the image taken by the Aqua satellite, the smoke ...

User comments : 0