Major breakthrough in stem cell manufacturing technology

Mar 31, 2014
Major breakthrough in stem cell manufacturing technology

Scientists at The University of Nottingham have developed a new substance which could simplify the manufacture of cell therapy in the pioneering world of regenerative medicine.

Cell therapy is an exciting and rapidly developing area of medicine in which have the potential to repair human tissue and maintain organ function in chronic disease and age-related illnesses. But a major problem with translating current successful research into actual products and treatments is how to mass-produce such a complex living material.

There are two distinct phases in the production of stem cell products; proliferation (making enough cells to form large tissue) and differentiation (turning the basic stem cells into functional cells). The material environment required for these two phases are different and up to now a single substance that does both jobs has not been available.

Now a multi-disciplinary team of researchers at Nottingham has created a new stem cell micro-environment which they have found has allowed both the self-renewal of cells and then their evolution into cardiomyocyte (heart) cells. The material is a hydrogel containing two polymers—an alginate-rich environment which allows proliferation of cells with a simple chemical switch to render the environment collagen-rich when the cell population is large enough. This change triggers the next stage of cell growth when develop a specific purpose.

Professor of Advanced Drug Delivery and Tissue Engineering, Kevin Shakesheff, said:

"Our new combination of hydrogels is a first. It allows dense structures to be produced from human (HPSC) in a single step process never achieved before. The discovery has important implications for the future of manufacturing in . This field of healthcare is a major priority for the UK and we are seeing increasing investment in future manufacturing processes to ensure we are ready to deliver real treatments to patients when HPSC products and treatments go to trial and become standard."

Explore further: Stem cell study finds source of earliest blood cells during development

More information: The research, Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation, is published in the Proceedings of the National Academy of Sciences (PNAS). www.pnas.org/content/early/2014/03/26/1319685111

add to favorites email to friend print save as pdf

Related Stories

A step closer to muscle regeneration

Dec 10, 2013

(Medical Xpress)—Muscle cell therapy to treat some degenerative diseases, including Muscular Dystrophy, could be a more realistic clinical possibility, now that scientists have found a way to isolate muscle cells from embryonic ...

New method increases supply of embryonic stem cells

Jan 27, 2014

A new method allows for large-scale generation of human embryonic stem cells of high clinical quality. It also allows for production of such cells without destroying any human embryos. The discovery is a big step forward ...

Recommended for you

Research helps identify memory molecules

12 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

13 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

13 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0