Major breakthrough in stem cell manufacturing technology

Mar 31, 2014
Major breakthrough in stem cell manufacturing technology

Scientists at The University of Nottingham have developed a new substance which could simplify the manufacture of cell therapy in the pioneering world of regenerative medicine.

Cell therapy is an exciting and rapidly developing area of medicine in which have the potential to repair human tissue and maintain organ function in chronic disease and age-related illnesses. But a major problem with translating current successful research into actual products and treatments is how to mass-produce such a complex living material.

There are two distinct phases in the production of stem cell products; proliferation (making enough cells to form large tissue) and differentiation (turning the basic stem cells into functional cells). The material environment required for these two phases are different and up to now a single substance that does both jobs has not been available.

Now a multi-disciplinary team of researchers at Nottingham has created a new stem cell micro-environment which they have found has allowed both the self-renewal of cells and then their evolution into cardiomyocyte (heart) cells. The material is a hydrogel containing two polymers—an alginate-rich environment which allows proliferation of cells with a simple chemical switch to render the environment collagen-rich when the cell population is large enough. This change triggers the next stage of cell growth when develop a specific purpose.

Professor of Advanced Drug Delivery and Tissue Engineering, Kevin Shakesheff, said:

"Our new combination of hydrogels is a first. It allows dense structures to be produced from human (HPSC) in a single step process never achieved before. The discovery has important implications for the future of manufacturing in . This field of healthcare is a major priority for the UK and we are seeing increasing investment in future manufacturing processes to ensure we are ready to deliver real treatments to patients when HPSC products and treatments go to trial and become standard."

Explore further: Stem cell study finds source of earliest blood cells during development

More information: The research, Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation, is published in the Proceedings of the National Academy of Sciences (PNAS). www.pnas.org/content/early/2014/03/26/1319685111

add to favorites email to friend print save as pdf

Related Stories

A step closer to muscle regeneration

Dec 10, 2013

(Medical Xpress)—Muscle cell therapy to treat some degenerative diseases, including Muscular Dystrophy, could be a more realistic clinical possibility, now that scientists have found a way to isolate muscle cells from embryonic ...

New method increases supply of embryonic stem cells

Jan 27, 2014

A new method allows for large-scale generation of human embryonic stem cells of high clinical quality. It also allows for production of such cells without destroying any human embryos. The discovery is a big step forward ...

Recommended for you

Fighting bacteria—with viruses

21 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

22 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0