Missing link in plant immunity identified

March 12, 2014
This is Cyril Zipfel (L) and Yasuhiro Kadota (R) from The Sainsbury Laboratory. Credit: The Sainsbury Laboratory

After a 30-year search, scientists have uncovered how an enzyme critical to plants' rapid immune response against microbes is activated.

"The insights will open up new ways to improve and in plants," says Professor Cyril Zipfel of The Sainsbury Laboratory in Norwich.

The , the NAPDH oxidase RBOHD, triggers a rapid generation of signalling molecules derived from oxygen that are believed to be detrimental to microbial growth. The newly-discovered way this enzyme is activated, by a protein (called BIK1) fills a gap in how plants perceive a threat and how signals are activated to trigger an .

The work, published in the journal Molecular Cell, was conducted by scientists from The Sainsbury Laboratory and from RIKEN in Yokohama in Japan, whose focus on the interactions between plants and microbes can spark innovation in tackling the world's most important crop diseases.

"Understanding how this enzyme was rapidly activated was an important missing link in our knowledge of plant immunity," says Professor Zipfel.

The scientists revealed that the enzyme is regulated by processes some of which are dependent on calcium and some of which are independent of it.

"Our findings lay the ground for future research investigating how these processes interact and how they switch on and off the molecules essential to defence and stress responses."

Explore further: New defenses deployed against plant diseases

Related Stories

New defenses deployed against plant diseases

March 14, 2010

An international team led by scientists at the Sainsbury Laboratory in Norwich, UK, have transferred broad spectrum resistance against some important plant diseases across different plant families. This breakthrough provides ...

Sniffed out: The 'gas detectors' of the plant world

January 23, 2014

The elusive trigger that allows plants to 'see' the gas nitric oxide (NO), an important signalling molecule, has been tracked down by scientists at The University of Nottingham. It is the first time that a central mechanism ...

Sussex fungicides may help fight ash dieback

January 29, 2014

A new fungicide treatment developed at the University of Sussex is emerging as a weapon in the fight to inhibit growth of Chalara fraxinea, which causes ash dieback, according to initial trials at The Sainsbury Laboratory.

Recommended for you

A common mechanism for human and bird sound production

November 27, 2015

When birds and humans sing it sounds completely different, but now new research reported in the journal Nature Communications shows that the very same physical mechanisms are at play when a bird sings and a human speaks.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.