Leech has a remarkably high tolerance to freezing and thawing

Mar 03, 2014 by Aaron L. Gronstal
Stereoscopic micrograph of Ozobranchus jantseanus (dorsal view). O. jantseanus is a parasitic leech of freshwater turtles. Credit: Suzuki et al. 2014

Imagine you're a leech, happily making a living on a turtle in some quiet, freshwater pond. What do you do when winter comes and temperatures in your warm little habitat begins to dip below freezing?

In a recent study, a team of researchers discovered that the leech, Ozobranchus jantseanus, has a remarkably high tolerance to freezing and thawing. Scientists once thought that it would be difficult for organisms to survive at temperatures below freezing because the water inside cells and tissues forms ice crystals, and this can ultimately damage the cells beyond repair.

In the new study, O. jantseanus survived after being stored for 24 hours in at temperatures of -196°C. The leech also recovered after being stored for 32 months at -90°C, and repeated freeze-thaw cycles at temperatures that fluctuated between from 20°C to −100°C.

O. jantseanus has shown incredible adaptability, and its unique mechanisms for dealing with the cold allows it to survive in a much wider range of temperatures than previously documented in other organisms.

According to the paper by Suzuki et al., "All of the individuals had been active before initiating the experiments, indicating that this cryoresistance ability is always present in O. jantseanus."

Studying how life adapts to adverse conditions, such as high and low environments, is an important aspect of astrobiology research. If life survives on planets and moons like Mars and Europa, organisms will have to cope with environmental conditions that are often far more extreme than those found in habitats on Earth. Cryobiosis is a term used to describe adaptations or tolerance of , and could be an important survival strategy for potential life in cold environments, such as beneath the icy shell of Jupiter's moon Europa.

Explore further: Bed bugs can survive freezing temperatures, but cold can still kill them

More information: Suzuki D, Miyamoto T, Kikawada T, Watanabe M, Suzuki T (2014) "A Leech Capable of Surviving Exposure to Extremely Low Temperatures." PLoS ONE 9(1): e86807. DOI: 10.1371/journal.pone.0086807

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

How plant cell compartments change with cell growth

10 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

10 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

11 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

12 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Tangent2
not rated yet Mar 03, 2014
This summary article is quite lacking in the underlying mechanism that these leeches employ to survive cryo temperatures. I don't know why the author didn't bother adding this to the article, which I found on the PLoS One article:

Indeed, trehalose or glycerol, which are typical cryoprotectants, were not detected before or after freezing (data not shown), implying that the low-temperature tolerance observed in the leeches of this study is not attributable to these saccharides; instead, it appears that that the leeches may be capable of tolerating physiological water freezing in their tissues. Anhydrobiotic organisms can withstand low temperatures indefinitely by becoming dehydrated, but cryobiotic organisms do not employ desiccation [17]. Indeed, the finding that O. jantseanus cannot survive dry conditions, for example a keeping of the leech at a petri dish without water in 24 hours at room temperature, implies that this leech species is a cryobiotic organism.