Improved design of lasers on optoelectronic chips will advance optical communications

Mar 26, 2014
Improved design of lasers on optoelectronic chips will advance optical communications
Current computer technology uses electronics, but a new laser design based on a thin-layered silicon chip may help increase data processing capabilities. Credit: Olga Miltsova/Hemera/Thinkstock

When it comes to data transmission, light is superior to electronics. An ability to transmit data in parallel by utilizing multiple light wavelengths allows optical fibers to carry more information than electrical cables. Computers are currently based on electronics, but they would benefit from employing optical signals. However, for this to become a reality, it needs to be implemented on a small scale and result in low power consumption.

Now, Vivek Krishnamurthy from the A*STAR Data Storage Institute in Singapore and his colleagues have designed a laser on a microelectronic chip that has a lower and a higher efficiency.

"By developing lasers on silicon, we can combine the electronic data processing capability of the microelectronic chip with the high energy efficiency of over distances ranging from a few micrometers within a chip to hundreds of meters in data centers," says Krishnamurthy.

The processing speed of the microelectronic chip is limited by its power consumption; most of the power is consumed by the connecting electrical wires and links. Optical links, on the other hand, consume practically no energy but are limited by the power consumption of the source, which is often a laser. For optical links to be feasible on a small scale, the electrical power consumption of lasers must be reduced, yet still be able to generate sufficient optical energy for transmission.

Lasers cannot be made from silicon as it is a poor light emitter. Instead, lasers are fabricated by bonding an active material based on indium phosphide—a good light emitter—to a thin silicon film. However, because silicon is better for carrying , the light from the laser needs to be routed through the via optical channels. This requires fabricating optical channels in silicon outside the laser region.

Generating light efficiently in the active medium and efficiently routing it via the silicon layer simultaneously reduces the electrical current required and increases the power generated. Calculations show that this silicon-based design will have a three to four times higher light generation efficiency than competing schemes.

This high efficiency makes the silicon-based laser design promising for making optical chips, which, says Krishnamurthy, is the next step for the project team. "We have begun the experimental demonstration of the laser," he says. "Our plan is to integrate this laser onto our silicon platform and develop a fully functional photonic system for applications, for example, in data communications and storage."

Explore further: Photonics: Enabling next-generation wireless networks

More information: Krishnamurthy, V., Wang, Q., Pu, J., Loh, T.-H. & Ho, S. T. "Optical design of distributed feedback lasers-on-thin-film-silicon." IEEE Photonics Technology Letters 25, 944–947 (2013).

add to favorites email to friend print save as pdf

Related Stories

Photonics: Enabling next-generation wireless networks

Mar 12, 2014

Wireless transmission at microwave frequencies is important for high-data-rate transmission applications, such as mobile phone networks, satellite links and remote imaging. Now, Xianshu Luo and colleagues ...

Recommended for you

'Comb on a chip' powers new atomic clock design

Jul 22, 2014

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Creating optical cables out of thin air

Jul 22, 2014

Imagine being able to instantaneously run an optical cable or fiber to any point on earth, or even into space. That's what Howard Milchberg, professor of physics and electrical and computer engineering at ...

User comments : 0