Intrinsically unstacked double-layer graphene for high-rate lithium-sulfur batteries

March 4, 2014

By introducing a large number of protuberances on graphene layers during chemical vapor deposition (CVD) synthesis, scientists have fabricated intrinsically unstacked double-layer graphene with a high specific surface area, excellent electrical conductivity, and mesoporous structure. The unstacked double-layer graphene, described in the journal Nature Communications, could be excellent cathode materials for high-power lithium-sulfur batteries.

Graphene is a promising functional material for a variety of applications including energy storage because of its extraordinary electrical and mechanical properties. However, graphene layers tend to stack with each other because of their huge and strong π-π interactions between multi-layered graphene with an interlayer distance of ca. 0.334 nm. This stacking results in a much smaller surface area of the obtained graphene, with poor energy-storage performance. It is necessary to avoid stacking to amplify the intrinsic properties of graphene and facilitate practical application.

Researchers have explored numerous novel approaches to inhibit the stacking of graphene. Most of them are based on the introduction of spacers such as metal oxides, conducting polymers, carbon black, or carbon nanotubes into the interlayer spaces. However, such hybridization processes inevitably cause changes in the intrinsic properties of graphene and/or induce poor interfaces.

Scientists in Tsinghua University (China) have now successfully fabricated intrinsically unstacked double-layer graphene through template-directed CVD. A team led by Prof. Qiang Zhang and Fei Wei explored the idea of using mesoporous nanoflakes as the template. The graphene layers are deposited onto the mesoporous template and cast into its mesoporous structure, where the carbon atoms deposited in the mesopores form the graphene protuberances and act as spacers to prevent the stacking of the graphene layers deposited on both sides of the mesoporous flakes. Consequently, double-layer template graphene composed of two graphene layers with a large number of protuberances can be recovered after the removal of the mesoporous flakes.

"The presence of a large number of mesopores in the nanoflake template gives rise to protuberances with a high density of ca. 5.8 × 1014 m-2 and sizes ranged from 2 to 7 nm between graphene layers," first-author Meng-Qiang Zhao tells "The protuberances play an important role in preventing the stacking of graphene layers. Besides, the presence of such protuberances on the surface of graphene can weaken the π-π interactions between graphene layers and thus prevent the stacking of neighboring double-layer template graphene to a certain extent." As a result, the double-layer graphene shows a high specific surface area of 1628 m2 g-1, abundant mesopores with the size ranging from 2 to 7 nm, and a total pore volume of 2.0 cm3 g-1.

Lithium-sulfur batteries are one of the most promising energy storage technologies due to high energy density. However, their power density and poor cycling stability have always been a key obstacle for their practical application. When using the unstacked double-layer graphene as the cathode materials, scientists were able to fabricate with excellent high-power performance. High reversible capacities of 1034 and 734 mA h g-1 were achieved at high discharge rates of 5 and 10 C, respectively. Even after 1000 cycles, high reversible capacities of ca. 530 and 380 mA h g-1 were retained at 5 and 10 C, with coulombic efficiencies constants at ca. 96 and 98 %, respectively.

"The excellent high-power performance can be attributed to the extraordinary electrical conductivity and unique mesoporous structure of the unstacked double-layer graphene," Prof. Zhang explained. The unstacked double-layer graphene's unique porous structure allows the effective storage of sulfur in the mesosized lamellar interlayer space, which gives rise to an efficient connection between the sulfur and graphene and prevents the diffusion of polysulfides into the electrolyte. Consequently, an excellent high-power performance of the lithium-sulfur cells with a high capacity and good stability is achieved.

"We expect that the unstacked double-layer graphene materials hold potential in applications for environmental protection, nanocomposites, electronic devices, and personal healthcare because of their intrinsic large surface area, extraordinary thermal and electric conductivity, robust 3D scaffold, tunable surface chemistry, and biocompatible interface," said Prof. Zhang, "Because unstacked layered nanostructures are not limited to , we foresee a new branch of chemistry evolving in the stabilization of nanostructures through 3D topological porous systems."

Explore further: Topographical approaches to measuring graphene thickness

More information: Zhao MQ, Zhang Q, Huang JQ, Tian GL, Nie JQ, Peng HJ, Wei F. "Unstacked double-layer templated graphene for high-rate lithium sulfur batteries." Nature Communications 2014, 5, 3410, DOI: 10.1038/ncomms4410.

Related Stories

Topographical approaches to measuring graphene thickness

September 28, 2012

(—Graphene has long shown potential for use in electronics, but difficulties in producing the material to a high enough quality has so far prevented the commercialisation of graphene-based devices.

Graphene growth on silver

January 14, 2014

Users from Northwestern University, working with the Center for Nanoscale Materials EMMD Group at Argonne, have demonstrated the first growth of graphene on a silver substrate.

3D graphene: Super-capacitors from sugar bubbles

January 24, 2014

Graphene sheets are immensely strong, lightweight and excellent at conducting electricity. Theoretically, macroscopical three-dimensional graphene assemblies should retain the properties of nanoscale graphene flakes. However, ...

New study reveals communications potential of graphene

February 19, 2014

Providing secure wireless connections and improving the efficiency of communication devices could be another application for graphene, as demonstrated by scientists at Queen Mary University of London and the Cambridge Graphene ...

The mechanism of caesium intercalation of graphene

February 21, 2014

Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene, can be manipulated by the inclusion of different atomic and molecular species ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.