Plant hormone strigolactone plays key role in response to drought stress

Mar 14, 2014
Figure 1: Effect of drought stress on strigolactone-deficient Arabidopsis plants (left) compared with wild-type plants (right). Credit: C. V. Ha, et al.

Under environmental stresses such as drought and salinity, plants may experience restricted growth and productivity—stress responses that are mediated by complex molecular signaling networks. An international team of researchers led by Lam-Son Tran and colleagues at the RIKEN Center for Sustainable Resource Science has now identified a previously unknown signaling pathway that plays a key role in stress tolerance.

The newly discovered signaling pathway is based on the hormone strigolactone. The synthesis of strigolactone, and the plant's response to its presence, is controlled by a gene family known as More Axillary Growth (MAX), defects in which can lower concentrations of the hormone or impair plant responses to it. Tran and his colleagues found that Arabidopsis plants with defective MAX genes were much less resilient to and high salinity than wild-type plants (Fig. 1). Application of artificial strigolactone, however, restored the resistance of low-strigolactone mutants to drought stress and even improved in wild-type plants.

By examining gene expression in max mutants, the researchers uncovered multiple genetic targets of the strigolactone pathway. The expression of many of these genes was already known to be induced by drought or hormones such as abscisic acid, suggesting that plants integrate multiple hormonal pathways to provide complex and finely tuned responses to stress.

One way that strigolactone acts is by regulating plant transpiration rates. Under , max mutants lose water faster than wild-type plants. Tran's team found that the mutants had more stomata than their wild-type counterparts and their stomata closed more slowly when subjected to . Strigolactone therefore controls both stomatal development and stomatal function.

The results, however, also suggested a second mechanism of strigolactone action. Photosynthesis-related genes are upregulated in max mutants, implying that normal strigolactone signaling might suppress photosynthesis under environmental stress, reducing demands on the plant's resources.

The team's research provides a basis for developing genetically modified drought- or salt-tolerant crops by manipulating genes in the strigolactone synthesis and response pathway. "Stress-inducible promoters could switch on the strigolactone pathway when plants encounter stress," notes Tran. "Thus, under normal growing conditions, the could grow without any yield penalty."

There is an intriguing further possibility for growing crops under tough conditions. As Tran points out, the application of artificial strigolactone, although expensive to manufacture at present, could be used to increase tolerance to as an alternative to developing drought-resistant transgenic crops.

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: Ha, C. V., Leyva-González, M. A., Osakabe, Y., Tran, U. T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Yamaguchi, S., Dong, N. V. et al. "Positive regulatory role of strigolactone in plant responses to drought and salt stress." Proceedings of the National Academy of Sciences 111, 851–856 (2014). dx.doi.org/10.1073/pnas.1322135111

Related Stories

A new role for cytokinin plant hormones

Sep 09, 2011

When plants, including crops, are exposed to environmental stresses such as drought or high salinity, abscisic acid (ABA), a stress-responsive hormone is synthesized to induce a protective response. At the same time, the ...

On guard against drought

Oct 28, 2011

Identification of a gene that helps plants to conserve water under drought conditions will bring biologists closer to understanding how plants tolerate drought. Researchers, led by Takashi Kuromori at Japan's ...

A major step forward towards drought tolerance in crops

Dec 19, 2011

When a plant encounters drought, it does its best to cope with this stress by activating a set of protein molecules called receptors. These receptors, once activated, turn on processes that help the plant ...

Plant branching hormone discovered

Jul 08, 2011

(PhysOrg.com) -- In an important breakthrough, plant biologists at The University of Queensland have identified a hormone that plays a key role in determining the size and shape of plants.

Shaping the plants of the future

Jul 28, 2011

A hormone that determines the size and shape of crops could improve harvests, and help in the control of a vampire plant according to Queensland researchers presenting their work today at the International Botanical Congress ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

22 hours ago

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.