Hardy star survives supernova blast

March 20, 2014
Credit  X-ray: NASA/CXC/SAO/F.Seward et al; Optical: NOAO/CTIO/MCELS, DSS

(Phys.org) —When a massive star runs out fuel, it collapses and explodes as a supernova. Although these explosions are extremely powerful, it is possible for a companion star to endure the blast. A team of astronomers using NASA's Chandra X-ray Observatory and other telescopes has found evidence for one of these survivors.

This hardy star is in a stellar explosion's debris field—also called its supernova remnant - located in an HII region called DEM L241. An HII (pronounced "H-two") region is created when the radiation from hot, young strips away the electrons from neutral hydrogen atoms (HI) to form clouds of ionized hydrogen (HII). This HII region is located in the Large Magellanic Cloud, a small companion galaxy to the Milky Way.

A new composite image of DEM L241 contains Chandra data (purple) that outlines the supernova remnant. The remnant remains hot and therefore X-ray bright for thousands of years after the original explosion occurred. Also included in this image are optical data from the Magellanic Cloud Emission Line Survey (MCELS) taken from ground-based telescopes in Chile (yellow and cyan), which trace the HII emission produced by DEM L241. Additional optical data from the Digitized Sky Survey (white) are also included, showing stars in the field.

R. Davies, K. Elliott, and J. Meaburn, whose last initials were combined to give the object the first half of its name, first mapped DEM L241 in 1976. The recent data from Chandra revealed the presence of a point-like X-ray source at the same location as a young massive star within DEM L241's supernova remnant. (Mouse over the image to see the location of the survivor .)

Astronomers can look at the details of the Chandra data to glean important clues about the nature of X-ray sources. For example, how bright the X-rays are, how they change over time, and how they are distributed across the range of energy that Chandra observes.

In this case, the data suggest that the point-like source is one component of a binary star system. In such a celestial pair, either a neutron star or black hole (formed when the star went supernova) is in orbit with a star much larger than our Sun. As they orbit one another, the dense neutron star or black hole pulls material away its companion star through the wind of particles that flows away from its surface. If this result is confirmed, DEM L241 would be only the third binary containing both a massive star and a neutron star or black hole ever found in the aftermath of a supernova.

Chandra's X-ray data also show that the inside of the supernova remnant is enriched in oxygen, neon and magnesium. This enrichment and the presence of the massive star imply that the star that exploded had a mass greater than 25 times, to perhaps up to 40 times, that of the Sun.

Optical observations with the South African Astronomical Observatory's 1.9-meter telescope show the velocity of the massive star is changing and that it orbits around the neutron star or black hole with a period of tens of days. A detailed measurement of the velocity variation of the massive companion star should provide a definitive test of whether or not the binary contains a black hole.

Indirect evidence already exists that other were formed by the collapse of a star to form a black hole. However, if the collapsed star in DEM L241 turns out to be a black hole, it would provide the strongest evidence yet for such a catastrophic event.

What does the future hold for this system? If the latest thinking is correct, the surviving massive star will be destroyed in a supernova explosion some millions of years from now. When it does, it may form a binary system containing two or a neutron star and a black hole, or even a system with two .

Explore further: Image: Chandra Observatory sees a heart in the darkness

More information: A paper describing these results is available online and was published in the November 10, 2012, issue of The Astrophysical Journal: dx.doi.org/10.1088/0004-637X/759/2/123

Related Stories

Image: Chandra Observatory sees a heart in the darkness

February 17, 2014

This Chandra X-Ray Observatory image of the young star cluster NGC 346 highlights a heart-shaped cloud of 8 million-degree Celsius gas in the central region. Evidence from radio, optical and ultraviolet telescopes suggests ...

Centaurus A: A new look at an old friend

February 6, 2014

(Phys.org) —Just weeks after NASA's Chandra X-ray Observatory began operations in 1999, the telescope pointed at Centaurus A (Cen A, for short). This galaxy, at a distance of about 12 million light-years from Earth, contains ...

A blast from its past dates the youngest neutron-star binary

December 4, 2013

X-rays streaming toward Earth from the region near a neutron star that is cannibalizing its companion star have revealed the pair to be the youngest "X-ray binary" yet known. The discovery by a team that includes a Penn State ...

NuSTAR telescope takes first peek into core of supernova

February 19, 2014

(Phys.org) —Astronomers have peered for the first time into the heart of an exploding star in the final minutes of its existence. The feat by the high-energy X-ray satellite NuSTAR provides details of the physics of the ...

Recommended for you

Hubble catches a transformation in the Virgo constellation

December 9, 2016

The constellation of Virgo (The Virgin) is especially rich in galaxies, due in part to the presence of a massive and gravitationally-bound collection of over 1300 galaxies called the Virgo Cluster. One particular member of ...

Khatyrka meteorite found to have third quasicrystal

December 9, 2016

(Phys.org)—A small team of researchers from the U.S. and Italy has found evidence of a naturally formed quasicrystal in a sample obtained from the Khatyrka meteorite. In their paper published in the journal Scientific Reports, ...

Scientists sweep stodgy stature from Saturn's C ring

December 9, 2016

As a cosmic dust magnet, Saturn's C ring gives away its youth. Once thought formed in an older, primordial era, the ring may be but a mere babe – less than 100 million years old, according to Cornell-led astronomers in ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.