Signal control with light frequencies

Mar 12, 2014 by Thorsten Naeser
In the future it might be possible that electric currents (green) will be switched with the frequencies of light waves (up to the peta-hertz region) that are bouncing on a chip. Credit: Christian Hackenberger

In a review article in Nature Photonics Ferenc Krausz and Mark Stockman discuss the prospects, recent experimental and theoretical findings open for the future of signal processing.

Light waves have the potential to boost the efficiency of conventional electronics by a factor of 100,000. In a review article that appears in Nature Photonics on March 14th, Prof. Ferenc Krausz of the Laboratory for Attosecond Physics (LAP) at the Max-Planck-Institut für Quantenoptik and the Ludwig-Maximilians-Universität München and his co-author Prof. Mark Stockman of Georgia State University (GSU) in Atlanta describe how this vision may one day come true. In their scenario, one would exploit the electric field of laser light to control the flow of electrons in dielectric materials, which, in turn, may modulate transmitted light and switch current in electronic circuits at light frequencies. Visible light oscillates at frequencies of about 1015 cycles per second, opening the possibility of switching light or electric current at rates in this range. And since both signals can also carry information, innovative optoelectronic technologies would enable a corresponding increase in the speed of data processing, opening a new era in information technology. The authors review the novel tools and techniques of attosecond technology, which may play a crucial role in making the above advances actually happen.

Light is likely to become the tool of choice for controlling electric currents and data processing. After all, its electric field directs the behavior of electrons, which are the stuff of electric current and encode the information in our computer and communications networks. The ability to manipulate electrons with light would open up a new era by permitting switching rates of 1015 per second, for light waves oscillate at frequencies of that order.

But turning this vision into a reality will require essentially perfect control over the properties of light waves. In a new review article in Nature Photonics, Ferenc Krausz and his American colleague Mark Stockman (a specialist in solid-state physics) discuss their visionary concepts and point to possible ways of achieving this goal. Their ideas are based on initial theoretical and experimental investigations which suggest that the oscillating electric field of light may switch (DOI: 10.1038/nature11567) and modulate light (DOI: 10.1038/nature11720) flowing in and transmitted/reflected by solid-state devices, respectively (Nature, 3 January 2013). This type of interaction between optical fields and electrons provides the technical basis for the field of attosecond physics, and has made it possible for the first time to observe the motions of electrons within atoms in real time, with the aid of attosecond light flashes. An attosecond is a billionth (10-9) of a billionth of a second, in other words 1018 times shorter than a second. Moreover, one can precisely mold the shape of these attosecond flashes (i.e. how their intensity varies with time), provided one has exquisite control over the behavior of the lasers that produce them. In their article, Krausz and Stockmann describe the techniques that have been developed to accomplish this feat. A more detailed history of attosecond physics is available on LAP's homepage (http://www.attoworld.de/Mainpages/Attoworld/index.html#279).

The new issue of Nature Photonics also includes a report on the latest work done by Prof. Krausz and his team, in collaboration with Mark Stockman and Vadym Apalkov from GSU. They have shown that the current generated in an insulating material (silica) by the of an intense and ultrashort laser pulse provides information about the precise waveform of the pulse that produced it (DOI: 10.1038/nphoton.2013.348, Nature Photonics, 14 March 2013). This finding represents the first step towards the realization of a detector that can visualize the shape of , just as an oscilloscope "reproduces" microwaves.

This breakthrough means that attosecond technology is at least on course to extend the domain of electron metrology into the optical frequency range. Whether or not this will lead to a corresponding increase in signal processing rates remains an open question. "Our goal is to develop a chip that allows us to switch electric currents on and off at optical frequencies. This would increase rates of information processing by a factor of 100,000, and that is as fast as it gets." The published experiments are still in the realm of basic research. But the scientists have begun to breach the limits of conventional electronics and photonics, thus opening the route to a far more efficient, light-based, electronics.

Explore further: Towards perfect control of light waves

More information: Ferenc Krausz und Mark I. Stockman. "Attosecond metrology: from electron capture to future signal processing." Nature Photonics, 14 March 2014, DOI: 10.1038/nphoton.2014.28

Tim Paasch-Colberg et al. "Solid-state light-phase detector." Nature Photonics, 14 March 2014, DOI: 10.1038/nphoton.2013.348

Agustin Schiffrin et al. "Optical-field-induced current in dielectrics." Nature, 3 January 2013, DOI: 10.1038/nature11567

Martin Schultze et al. "Controlling dielectrics with the electric field of light." Nature, 3 January 2013, DOI: 10.1038/nature11720

add to favorites email to friend print save as pdf

Related Stories

Towards perfect control of light waves

Jan 13, 2014

(Phys.org) —A team at the Laboratory for Attosecond Physics (LAP) in Garching (Germany) has constructed a detector, which provides a detailed picture of the waveforms of femtosecond laser pulses. Knowledge ...

Speeding up electronics to light frequencies

Dec 17, 2012

(Phys.org)—Modern information processing allows for breathtaking switching rates of about a 100 billion cycles per second. New results from the Laboratory for Attosecond Physics (LAP) of Prof. Ferenc Krausz ...

Making insulator conduct

Dec 05, 2012

(Phys.org)—New results on the interaction of femto- and attosecond light pulses with a solid insulator hold promise for reaching electronic switching rates up to the petahertz domain.

Flashes of light out of the mirror

Jun 12, 2012

(Phys.org) -- A team of the Laboratory of Attosecond physics at the Max Planck Institute of Quantum Optics developed an alternative way of generating attosecond flashes of light. 

Recommended for you

'Comb on a chip' powers new atomic clock design

Jul 22, 2014

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Creating optical cables out of thin air

Jul 22, 2014

Imagine being able to instantaneously run an optical cable or fiber to any point on earth, or even into space. That's what Howard Milchberg, professor of physics and electrical and computer engineering at ...

New material puts a twist in light

Jul 18, 2014

Scientists at The Australian National University (ANU) have uncovered the secret to twisting light at will. It is the latest step in the development of photonics, the faster, more compact and less carbon-hungry ...

User comments : 0