Fingerprint of dissolved glycine in the Terahertz range explained

March 28, 2014
Fingerprint of dissolved glycine in the Terahertz range explained
The molecular motion of the amino acid glycine and its surrounding water molecules result in the formation of characteristic bands in the Terahertz spectrum. Credit: Decka, Havenith

Chemists at the Ruhr-Universität Bochum (RUB) have, for the first time, completely analysed the fingerprint region of the Terahertz spectrum of a biologically relevant molecule in water, in this case, an amino acid. By combining spectroscopy and molecular-dynamics simulations, they rendered the motion of the most basic amino acid, glycine, visible in an aqueous solution. Their results have disproved the long-standing theory that frequencies in the Terahertz range provide no information regarding the amino acid's motion. The team led by Prof Dr Martina Havenith-Newen and Prof Dr Dominik Marx published their report in the Journal of the American Chemical Society (JACS).

Representing molecular motion by means of Terahertz spectroscopy

Researchers use Terahertz (THz) spectroscopy to send short radiation pulses into a sample of interest. The Terahertz range covers wavelengths of one to ten THz (0.3 millimetres to 30 micrometres) and extends between the infrared and the microwave range. The sample, in this case a mixture of water and glycine, partially absorbs the radiation, forming an absorption pattern, which is represented by chemists in the form of a . Certain areas of the spectrum, so-called bands, describe the motions of molecular bonds. Individual atoms in a molecule are not bonded rigidly; rather, they are permanently in motion. Complex computer simulations contribute significantly to analysing the spectra, as it is not always easy to decipher which individual bands of a spectrum correlate with which molecular motions.

THz analysis renders glycine motion in water visible

The RUB team has proved that THz analysis may be used to represent both the motion inside the glycine molecule and the motion of the glycine molecule together with its bound water molecules. The bands in the Terahertz spectrum, moreover, reflected the glycine's opening and closing motion. The spectrum also incorporated the motion of hydrogen bridges between the and its bound molecules. "The interaction between ab initio molecular-dynamics simulations and Terahertz spectroscopy provides us with an excellent instrument for tracking and understanding solvation processes on the molecular level," says Martina Havenith-Newen, Head of the Department of Physical Chemistry II.

Explore further: Keeping an eye on the surroundings

More information: J. Sun, G. Niehues, H. Forbert, D. Decka, G. Schwaab, D. Marx, M. Havenith (2014): "Understanding THz spectra of aqueous solutions: glycine in light and heavy water," Journal of the American Chemical Society, DOI: 10.1021/ja4129857

Related Stories

Keeping an eye on the surroundings

August 13, 2008

Water is no passive spectator of biological processes; it is an active participant. Protein folding is thus a self-organized process in which the actions of the solvent play a key role. So far, the emphasis in studies of ...

New vacuum power amplifier demonstrated at 0.85 Terahertz

November 22, 2013

The submillimeter wave, or terahertz, part of the electromagnetic spectrum falls between the frequencies of 0.3 and 3 terahertz, between microwaves and infrared light. Historically, device physics has prevented traditional ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.