Evolutionary mysteries of parasites

Mar 04, 2014 by Kevin Bradley
Up close with plasmodium malariae. Credit: Creative Commons

Investigating the evolutionary history of humans and other vertebrates can be difficult, but diving into the evolution of microbes is a challenge unto itself.

"Most biodiversity is invisible to us," explained Patrick Keeling to a room full of Dalhousie's top life science researchers and students. "Animals, plants and fungi are important, but there is a vast variety of microbes as well."

Dr. Keeling, who obtained his Ph.D. in biochemistry at Dalhousie working with Dal researcher and recent Herzberg Medal winner Ford Doolittle, is currently a faculty member at UBC. Last month, he visited campus as part of the Governor General Lecture Series hosted by the Royal Society of Canada, the country's national academy of distinguished scholars in the arts, humanities and sciences.

Dr. Keeling's lecture was titled, "Here Be Dragons," due to the unknown and mysterious nature of the microbial world. He talked about plasmodium malariae, a parasitic single-cell protozoan that is responsible for infecting humans with malaria disease.

An evolutionary mystery

"Plasmodium is particularly special, because it gets inside our cells," he explained. "This organism lives in the darkness of our bodies, so it was a surprise to find that it has a . In plants and algae, photosynthesis takes place in the chloroplast. Why would an intracellular parasite, like malaria, contain the structure that plants use for photosynthesis? Where did the chloroplast come from?"

Dr. Keeling explained that one of the reasons chloropasts are special is that they come from a process called endosymbiosis, where one cell eats another and retains it, the two fusing together and become one cell. This process is also responsible for the energy-producing mitochondria in our own cells.

In the case of the malaria-causing plasmodium, the answer to how the microbe obtained its chloroplast was found in an unlikely place. Researcher Bob Moore isolated a photosynthetic unicellular organism called Chromera at stony corals off the coast of Australia. By sequencing part of the genome of Chromera, Dr. Keeling and his team discovered that it was the most closely related relative to plasmodium. It was revealed that Chromera had secondary endosymbiosis with red algae, which finally answered how plasmodium got its chloroplast.

An emphasis on exploration

The fact that the of a major disease-causing organism could be revealed by a chance discovery among coral reefs serves as a case study for the importance of basic exploratory research, explained Dr. Keeling.

"We all sort of acknowledge that basic research is important, but there's also a level of exploration that's necessary to find the right questions. Sometimes we need to get in the boat and go look at things to see what we can find."

Explore further: Scientists discover chemical modification in human malaria parasite DNA

add to favorites email to friend print save as pdf

Related Stories

Sequencing hundreds of chloroplast genomes now possible

Jan 31, 2013

Researchers at the University of Florida and Oberlin College have developed a sequencing method that will allow potentially hundreds of plant chloroplast genomes to be sequenced at once, facilitating studies of molecular ...

Captured: Mysterious oyster killers

Jul 25, 2013

University of British Columbia researchers have apprehended tiny, elusive parasites that have plagued oysters from British Columbia to California.

Recommended for you

Fighting bacteria—with viruses

21 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

22 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0