Crystals ripple in response to light: First propagating surface phonon polaritons in a van der Waals crystal

Mar 06, 2014
This image shows surface phonon polaritons launched by infrared light propagate across layers of hexagonal boron nitride, a van der Waals crystal. Credit: Siyuan Dai

Light can trigger coordinated, wavelike motions of atoms in atom-thin layers of crystal, scientists have shown. The waves, called phonon polaritons, are far shorter than light waves and can be "tuned" to particular frequencies and amplitudes by varying the number of layers of crystal, they report in the early online edition of Science March 7.

These properties - observed in this class of material for the first time - open the possibility of using polaritons to convey information in tight spaces, create images at far finer resolution than is possible with light, and manage the flow of heat in .

"A wave on the surface of water is the closest analogy," said Dimitri Basov, professor of physics at the University of California, San Diego, who led the project. "You throw a stone and you launch concentric waves that move outward. This is similar. Atoms are moving. The triggering event is illumination with light."

The team used infrared light to launch phonon polaritons across a material called hexagonal boron nitride - crystals that form sheet-like layers held together by the weakest of chemical bonds.

Siyuan Dai, a graduate student in Basov's research group who was responsible for much of the experimental work and is the first author of the report, focused an infrared laser on the tip of an atomic-force microscope as it scanned across this material, registering motions in the crystalline lattice.

This image shows interference patterns created by surface phonon polaritons propagating across atom-thin layers of crystalline boron nitride and reflecting back from edges. The center image is a model; images on the right and left derive from measurements. Credit: Siyuan Dai

The measurements revealed interference patterns created as the traveling waves reached edges of the material and reflected back. The amplitude and frequency of the waves depended on the number of layers in the crystal. Both properties will prove useful in the design of nanodevices.

"You can bounce these waves off edges. You can bounce them off defects. You can play all sorts of cool tricks with them. And of course, you can design the wavelength and amplitude of these oscillations in a way that suits your purpose," Basov said.

The finding was something of a surprise. Boron nitride is an insulator used as a support structure for other materials, like graphene, which this group recently showed could support waves of electron densities called plasmon polaritons. Although similarly compact, polaritons rapidly dissipate.

"Because these materials are insulators, there is no electronic dissipation. So these travel further," Basov said. "We didn't expect them to be long-lived, but we are pleased that they are. It's becoming kind of practical."

Explore further: Heat makes electrons spin in magnetic superconductors

More information: "Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride" Science, 2014.

Related Stories

Scientists first to observe plasmons on graphene

Jun 20, 2012

With a beam of infrared light, scientists have sent ripples of electrons along the surface of graphene and demonstrated that they can control the length and height of these oscillations, called plasmons, using ...

Researchers take magnetic waves for a spin

Jan 29, 2014

Researchers at New York University have developed a method for creating and directing fast moving waves in magnetic fields that have the potential to enhance communication and information processing in computer chips and ...

New material gives visible light an infinite wavelength

Oct 13, 2013

Researchers from the FOM Institute AMOLF and the University of Pennsylvania have fabricated a material which gives visible light a nearly infinite wavelength. The new metamaterial is made by stacking silver ...

Recommended for you

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

ICARUS neutrino experiment to move to Fermilab

Apr 23, 2015

A group of scientists led by Nobel laureate Carlo Rubbia will transport the world's largest liquid-argon neutrino detector across the Atlantic Ocean from CERN to its new home at the US Department of Energy's ...

National security on the move with high energy physics

Apr 23, 2015

Scientists are developing a portable technology that will safely and quickly detect nuclear material hidden within large objects such as shipping cargo containers or sealed waste drums. The researchers, led ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Whydening Gyre
5 / 5 (1) Mar 06, 2014
Zeph will have a field day with this. Perhaps rightly so...
Rimino
Mar 07, 2014
This comment has been removed by a moderator.
Rimino
Mar 07, 2014
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.