Causes, consequences of global climate warming that took place 56 million years ago studied

Mar 25, 2014
This image shows continental sediments in the Esplugafreda ravine, a small tributary of the Noguera Ribagorzana river, in the extreme west of the province of Lleida and close to the village of Aren (Huesca). Credit: UPV/EHU-University of the Basque Country

The growing and justified concern about the current global warming process has kindled the interest of the scientific community in geological records as an archive of crucial information to understand the physical and ecological effects of ancient climate changes. A study by the UPV/EHU's Palaeogene Study Group deals with the behaviour of the sea level during the Palaeocene–Eocene Thermal Maximum (PETM) 56 million years ago and has ruled out any connection. The study has been published in the journal Palaeogeography, Palaeoclimatology, Palaeoecology.

"The fall in sea level did not unleash the emission of greenhouse gases during the Palaeocene–Eocene Thermal Maximum (PETM)," pointed out Victoriano Pujalte, lecturer in the UPV/EHU's Department of Stratigraphy and Palaeontology, and lead researcher of the study.

The Palaeocene–Eocene Thermal Maximum (PETM) was a brief interval (in geological terms, it "only" lasted about 200,000 years) of extremely high temperatures that took place 56 million years ago as a result of a massive emission of into the atmosphere. The global temperature increase is reckoned to have been between 5º C and 9º C. It was recorded in geological successions worldwide and was responsible for a great ecological impact: the most striking from an anthropological point of view was its impact on mammals, but it also affected other organisms, including foraminifera and nannofossils (marine microorganisms that are at the base of the trophic chain) and plants.

However, what actually caused this warming remains a controversial issue. The most widely accepted hypothesis suggests that it was due to the destabilising of methane hydrates that remained frozen on ocean floors. "Some authors, like Higgins and Schrag (2006), for example, proposed that a fall in sea level could have caused or co-contributed towards the unleashing of the emission of methane or CO2," pointed out Victoriano Pujalte, lecturer in the UPV/EHU's Department of Stratigraphy and Palaeontology, and lead researcher in the study. According to this hypothesis, "the marine sediments that were submerged in the sea were exposed when the sea level fell, and were responsible for the CO2 emissions," he added. That is what, to a certain extent, prompted this study. Others not only reject that possibility but also the fall in sea level itself. "We set out to try and establish the behaviour of the sea level during that time interval, the PETM," said Pujalte.

There is no cause-effect relationship

The studies were carried out mainly in the Pyrenees between Huesca and Lérida, specifically in the Tremp-Graus Basin, and also in Zumaia (Gipuzkoa, Basque Country). The Palaeocene-Eocene rocks have outcropped extensively in both areas, in other words, exposed on the surface, and they represent a whole range of ancient atmospheres, both continental and marine. "They provide a unique opportunity to explore the effects of changes in sea level and to analyse their effects," added Pujalte.

The most useful indicators are the stable oxygen and carbon isotopes. The oxygen ones provide information on palaeotemperatures, but any sign of them can only be retrieved in deep-sea sample cores. The carbon isotopes provide data on variations in CO2 content in the atmosphere and in the oceans, and they can also be retrieved in ancient rocks that have outcropped in above-ground plots of land. In general, the variations of both isotopes run parallel, given that an increase in the proportion of CO2 is coupled with an increase in temperature.

The results obtained indicate that the PETM was in fact preceded by a fall in sea level, the size of which is estimated to have been about 20 metres and the maximum descent of which probably occurred about 75 million years before the start of the PETM. "However, it is doubtful that the descent was the cause of the PETM, although it could have contributed towards it," pointed out Victoriano Pujalte. "They occurred at the same time, but there is no cause-effect relationship."

Furthermore, the researchers observed that the rise in the continued after the PETM, when the global temperature returned to normal levels. "Its origin was not only caused, therefore, by the thermal expansion of the oceans linked to the warming," said Pujalte. "It is suggested that the most likely cause of it was the volcanic activity documented in the North Sea during the end of the Palaeocene and start of the Eocene; this activity was related to the expansion of the oceanic ridge in the North Atlantic," he concluded.

Explore further: New detector sniffs out origins of methane

More information: V. Pujalte, B. Schmitz. J.I. Baceta. Sea-level changes across the Paleocene-Eocene interval in the Spanish Pyrenees, and their posible relationship with North Atlantic magmatism. 2014. Palaeogeography, Palaeoclimatology, Palaeoecology 393: 45-60 www.sciencedirect.com/science/… ii/S0031018213004720

add to favorites email to friend print save as pdf

Related Stories

Dating an ancient episode of severe global warming

Jun 15, 2011

Using sophisticated methods of dating rocks, a team including University of Southampton researchers based at the National Oceanography Centre, Southampton, have pinned down the timing of the start of an episode ...

Global warming led to dwarfism in mammals—twice

Nov 02, 2013

Mammal body size decreased significantly during at least two ancient global warming events, a new finding that suggests a similar outcome is possible in response to human-caused climate change, according to a University of ...

Recommended for you

New detector sniffs out origins of methane

4 hours ago

Methane is a potent greenhouse gas, second only to carbon dioxide in its capacity to trap heat in Earth's atmosphere for a long time. The gas can originate from lakes and swamps, natural-gas pipelines, deep-sea ...

The tides they are a changin'

8 hours ago

Scientists from the University of Southampton have found that ocean tides have changed significantly over the last century at many coastal locations around the world.

Lightning plus volcanic ash make glass

Mar 03, 2015

In their open-access paper for Geology, Kimberly Genareau and colleagues propose, for the first time, a mechanism for the generation of glass spherules in geologic deposits through the occurrence of volcan ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.