Commonly used pain relievers have added benefit of fighting bacterial infection

Mar 13, 2014
This image shows nonsteroidal anti-inflammatory drugs bound to bacterial protein. Credit: Aaron Oakley

Some commonly used drugs that combat aches and pains, fever, and inflammation are also thought to have the ability to kill bacteria. New research appearing online on March 13 in the Cell Press journal Chemistry & Biology reveals that these drugs, better known as NSAIDs, act on bacteria in a way that is fundamentally different from current antibiotics. The discovery could open up new strategies for fighting drug-resistant infections and "superbugs."

"We discovered that some anti-inflammatory drugs used in human and veterinary medicine have weak antibiotic activity and that they exert this secondary activity by preventing from copying their DNA, which they need to do in order to multiply," explains senior author Dr. Aaron Oakley of the University of Wollongong, in Australia. The researchers analyzed three NSAIDs: bromofenac, carprofen, and vedaprofen. The more commonly known NSAIDs, which include aspirin, ibuprofen, and naproxen, were not tested.

Dr. Oakley and his team identified that anti-inflammatory drugs bind to and inhibit a specific protein in bacteria called the DNA clamp. The DNA clamp, which is conserved across bacterial species, is part of an enzyme that synthesizes DNA molecules from their nucleotide building blocks.

The discovery comes at a time when there is a pressing need for new classes of antibiotics. "The fact that the bacteria-killing effect of the anti-inflammatory drugs is different from conventional drugs means that the NSAIDS could be developed into new kinds of antibiotics that are effective against so-called superbugs," says Dr. Oakley. "This is important because the have become resistant to many—and in some cases most—of the available antibiotics."

Explore further: Dead feeder cells support stem cell growth

More information: Chemistry & Biology, Yin et al.: "DNA Replication is the Target for the Antibacterial Effects of Non-Steroidal Anti-Inflammatory Drugs." dx.doi.org/10.1016/j.chembiol.2014.02.009

Related Stories

Chemists discover new class of antibiotics

Mar 07, 2014

(Phys.org) —A team of University of Notre Dame researchers led by Mayland Chang and Shahriar Mobashery have discovered a new class of antibiotics to fight bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) ...

Recommended for you

Dead feeder cells support stem cell growth

Apr 24, 2015

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

Improving accuracy in genome editing

Apr 23, 2015

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Drug research enhanced by fragment screening libraries

Apr 22, 2015

Generation of fragment screening libraries could enhance the analysis and application of natural products for medicinal chemistry and drug discovery, according to Griffith University's Professor Ronald Quinn.

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.