Cholesterol transporter structure decoded

Mar 21, 2014 by Dr. Carmen Rotte
The cholesterol transporter TSPO in the outer mitochondrial membrane serves as a docking site for important diagnostic markers and for a number of drugs such as diazepam. Credit: Łukasz Jaremko, Mariusz Jaremko, Markus Zweckstetter / DZNE, MPI for Biophysical Chemistry and UMG

The word "cholesterol" is directly linked in most people's minds with high-fat foods, worrying blood test results, and cardiovascular diseases. However, despite its bad reputation, cholesterol is essential to our wellbeing: It stabilises cell membranes and is a raw material for the production of different hormones in the cell's power plants – the mitochondria. Now, for the first time, scientists in Göttingen have solved the high-resolution structure of the molecular transporter TSPO, which introduces cholesterol into mitochondria. This protein also serves as a docking site for diagnostic markers and different drugs, such as Valium. The detailed knowledge of its three-dimensional shape and function opens up new diagnostic and therapeutic perspectives.

Not only are the most important energy supplier in living cells. They also produce steroid hormones such as testosterone and oestradiol, which control many processes in the body. The raw material for the production of is cholesterol, which must first be transported into mitochondria across two membranes. This difficult task is carried out by a molecular transport protein named TSPO in the outer mitochondrial membrane. Using nuclear magnetic resonance spectroscopy, two teams working with the Göttingen-based scientists Markus Zweckstetter and Stefan Becker have now shown the complex three-dimensional structure of the protein "at work" in atomic detail.

The researchers achieved this methodical breakthrough by applying an ingenious trick: In their experiments, they coupled the transporter to an important diagnostic marker called PK11195; it was this complex that first gave the scientists analysable results. In fact, the TSPO structure delivers more than just clues about how cholesterol is transported into the mitochondria. "We now also have a much better understanding of how TSPO recognises and binds to diagnostic markers and drugs", explains Markus Zweckstetter, head of research groups at the German Center for Neurodegenerative Diseases (DZNE), at the Max Planck Institute for Biophysical Chemistry, and at the Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) at the University Medical Center of Göttingen (UMG).

TSPO has long been successfully used in diagnostics and treatment of a number of diseases. "When the brain is injured or inflamed, its cells produce more TSPO. This fact is used in the diagnosis of such as Parkinson's and Alzheimer's", explains Stefan Becker, a protein chemist and Max Planck researcher who works next door to Zweckstetter.

Physicians also use radioactively tagged molecules such as PK11195 to visualise inflamed areas of the brain. A detailed understanding of how TSPO binds to such markers opens up novel paths for diagnostic imaging and could constitute an important step along the way to early detection of such diseases and inflammations.

TSPO also binds several medicinal drugs such as diazepam, also known by the trade name of Valium. Not only is diazepam a widely prescribed sedative; it is also used in the treatment of anxiety and epileptic seizures. The Göttingen researchers hope that detailed information about the transporter's structure will help to develop new TSPO-binding drugs.

Explore further: Brain biomarker shows promise in heart

More information: Łukasz Jaremko, Mariusz Jaremko, Karin Giller, Stefan Becker, Markus Zweckstetter. "Structure of the mitochondrial translocator protein in complex with a diagnostic ligand." Science, 20 March 2014

add to favorites email to friend print save as pdf

Related Stories

Brain biomarker shows promise in heart

Jan 27, 2014

A biomarker widely used to diagnose brain injury has shown early promise for assessing the severity of heart inflammation, or myocarditis, find researchers at Columbia University's Mailman School of Public ...

Protein 'filmed' while unfolding at atomic resolution

Feb 11, 2013

When proteins get "out of shape", the consequences can be fatal. They lose their function and in some cases form insoluble, toxic clumps that damage other cells and can cause severe diseases such as Alzheimer's or Parkinson's. ...

Forgotten and lost - when proteins 'shut down' our brain

Feb 17, 2009

(PhysOrg.com) -- Which modules of the tau protein, in neurons of Alzheimer disease patients, may act in a destructive manner were investigated by researchers from the Max Planck Institute for Biophysical Chemistry ...

Recommended for you

User comments : 0