Carcinogenic mechanism of incomplete cell reprogramming in vivo

Mar 14, 2014
Fig. 1 Mouse kidney subject to the action of reprogramming factors for 7 days Appearance of kidney exposed to four reprogramming factors for 7 days and then left for a further 7 days. Compared to the control kidney, the kidney exposed to the reprogramming factors has grown larger due to tumor formation. The right-hand image shows the histological stain pattern of a +Doxycyclin kidney. Scale bar: 200µm.

A research team led by the group of Professor Yasuhiro Yamada, Center for iPS Cell Research and Application (CiRA), Kyoto University, has discovered that when cells are subjected to incomplete reprogramming in vivo, epigenetic modifications take place which promote carcinogenesis.

iPS cells and have the common attribute of being capable of unlimited proliferation, but whereas cancer is thought to arise through a series of gene mutations, iPS cells are generated by reprogramming somatic cells, which need not involve any gene mutation.

However, when mouse cells were exposed in vivo to four reprogramming factors (Oct3/4, Sox2, Klf4, c-Myc) in such a way as to cause incomplete reprogramming, a major change occurred in the DNA methylation pattern (epigenome), resulting in tumorigenesis in a range of tissues. Tumors arising in the kidney through this process were very similar to Wilms' tumor, a pediatric kidney cancer, in terms of histological and molecular biological features. An examination of the cells of these tumors revealed no gene mutation, but did identify modifications in the epigenome, which was found to have altered to a pattern resembling that of . Furthermore, the researchers were able to generate normal kidney cells from iPS cells created by reprogramming the tumor cells. These findings indicate the possibility that epigenetic regulation may promote tumorigenesis in certain types of cancer.

The findings of the research demonstrated that incomplete reprogramming using a procedure devised to reprogram in vivo leads to the formation of tumors resembling nephroblastoma. Previously it had been thought that cumulative gene mutations were important in oncogenesis. However, the results of the present research indicate that, with certain types of tumor, cancer can be triggered not by , but by epigenetic alterations. In other words, if it were possible to alter epigenetic conditions, it might be possible to alter the properties of cancer , which could lead in the future to new cancer therapies.

The present research additionally made use of iPS cell technology to develop a technique for epigenetic regulation that does not induce genomic mutation. It is hoped that using iPS cell technology in this way will bring new perspectives to disease research.

Explore further: Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors

More information: "Premature Termination of Reprogramming In Vivo Leads to Cancer Development through Altered Epigenetic Regulation." Kotaro Ohnishi, Katsunori Semi, Takuya Yamamoto, Masahito Shimizu, Akito Tanaka, Kanae Mitsunaga, Keisuke Okita, Kenji Osafune, Yuko Arioka, Toshiyuki Maeda, Hidenobu Soejima, Hisataka Moriwaki, Shinya Yamanaka, Knut Woltjen, Yasuhiro Yamada. Cell - 13 February 2014 (Vol. 156, Issue 4, pp. 663-677) dx.doi.org/10.1016/j.cell.2014.01.005

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Some anti-inflammatory drugs affect more than their targets

15 hours ago

Researchers have discovered that three commonly used nonsteroidal anti-inflammatory drugs, or NSAIDs, alter the activity of enzymes within cell membranes. Their finding suggests that, if taken at higher-than-approved ...

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

User comments : 0