Researchers grow carbon nanofibers using ambient air, without toxic ammonia

March 24, 2014 by Matt Shipman
Researchers have shown they can grow vertically-aligned carbon nanofibers using ambient air, rather than ammonia gas. Credit: Anatoli Melechko

(Phys.org) —Researchers from North Carolina State University have demonstrated that vertically aligned carbon nanofibers (VACNFs) can be manufactured using ambient air, making the manufacturing process safer and less expensive. VACNFs hold promise for use in gene-delivery tools, sensors, batteries and other technologies.

Conventional techniques for creating VACNFs rely on the use of ammonia gas, which is toxic. And while ammonia gas is not expensive, it's not free.

"This discovery makes VACNF manufacture safer and cheaper, because you don't need to account for the risks and costs associated with ammonia gas," says Dr. Anatoli Melechko, an adjunct associate professor of materials science and engineering at NC State and senior author of a paper on the work. "This also raises the possibility of growing VACNFs on a much larger scale."

In the most common method for VACNF manufacture, a substrate coated with nickel nanoparticles is placed in a and heated to 700 degrees Celsius. The chamber is then filled with ammonia gas and either acetylene or acetone gas, which contain carbon. When a voltage is applied to the substrate and a corresponding anode in the chamber, the gas is ionized. This creates plasma that directs the nanofiber growth. The nickel nanoparticles free , which begin forming VACNFs beneath the nickel catalyst nanoparticles. However, if too much carbon forms on the nanoparticles it can pile up and clog the passage of carbon atoms to the growing nanofibers.

Ammonia's role in this process is to keep carbon from forming a crust on the nanoparticles, which would prevent the formation of VACNFs.

"We didn't think we could grow VACNFs without ammonia or a hydrogen gas," Melechko says. But he tried anyway.

Melechko's team tried the conventional vacuum technique, using acetone gas. However, they replaced the with – and it worked. The size, shape and alignment of the VACNFs were consistent with the VACNFs produced using conventional techniques.

"We did this using the vacuum technique without ammonia," Melechko says. "But it creates the theoretical possibility of growing VACNFs without a vacuum chamber. If that can be done, you would be able to create VACNFs on a much larger scale."

Melechko also highlights the role of two high school students involved in the work: A. Kodumagulla and V. Varanasi, who are lead authors of the paper. "This discovery would not have happened if not for their approach to the problem, which was free from any preconceptions," Melechko says. "I think they're future materials engineers."

The paper, "Aerosynthesis: Growth of Vertically-aligned Carbon Nanofibres with Air DC Plasma," is published online in Nanomaterials and Nanotechnology.

Explore further: Study finds more efficient means of creating, arranging carbon nanofibers

More information: The study is available online: www.intechopen.com/journals/nanomaterials_and_nanotechnology/aerosynthesis-growth-of-vertically-aligned-carbon-nanofibres-with-air-dc-plasma

Related Stories

Ions control shape of nanofibers grown on clear substrate

August 16, 2011

Researchers from North Carolina State University have found a new way to develop straight carbon nanofibers on a transparent substrate. Growing such nanofiber coatings is important for use in novel biomedical research tools, ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

DistortedSignature
not rated yet Mar 24, 2014
My initial question was why they thought ammonia was needed in the first place. Instead of asking that in the comments I decided to read the paper. It seems like they knew you needed hydrogen to prevent the carbon build up/clogging/crust but not how much or in what concentrations/ratios. This paper showed that ambient air provides enough hydrogen to ensure there isn't excess carbon. They tinkered with the ratios of the air and the current applied to get the picture that is shown in the article above.

My first knee-jerk reaction was that, "That's like using asbestos on a wall that is already insulated without it!" but that wasn't the case.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.