Caffeinated fruit flies help identify potential genes affecting insecticide resistance

Mar 26, 2014

To understand genetic mechanisms underlying insecticide resistance, scientists employed fruit flies and caffeine, a stimulant surrogate for xenobiotics in lab studies on resistance.

As Rachel Carson predicted 50 years ago in her groundbreaking book Silent Spring, crop pests are capable of outwitting the known as xenobiotics that are devised to kill them. This development of resistance to insecticides is a serious problem because it threatens crop production and thereby can influence the availability and costs of many foods as well as the economy.

To understand the underlying , University of Kansas scientists turned to the fruit fly Drosophila melanogaster and caffeine, a that is often employed as a surrogate for xenobiotics in lab studies on resistance.

The researchers tested the response to caffeine for over 1,700 lines of from the Drosophila Synthetic Population Resource (DSPR). They successfully mapped 10 quantitative trait loci, stretches of DNA containing genes linked to either resistance or susceptibility to caffeine, and subsequently identified Cyp12d1-d and Cyp12d1-p, two members of the cytochrome P450 gene family that codes for enzymes that are involved in detoxifying toxic compounds: The scientists found that the two genes contribute over 10 percent of the fruit flies' variation in resistance to caffeine.

This approach can be employed to uncover genes involved in resistance to essentially any drug of interest. In fact, in previous studies (G3: Genes|Genomes|Genetics, August 2013), the authors adopted this approach to identify 45 percent of the genetic variance in the toxicity of the chemotherapeutic medication methotrexate.

Explore further: Researchers unlock the secret of multiple insecticide resistance in mosquitoes

More information: Abstract: "Quantitative genetics of caffeine resistance in Drosophila melanogaster." Chad A. Highfill, Michael A. Najarro, Stuart J. Macdonald. Department of Molecular Biosciences, University of Kansas, Lawrence, KS. abstracts.genetics-gsa.org/cgi… il.pl?absno=14531586

add to favorites email to friend print save as pdf

Related Stories

Researchers abuzz over caffeine as cancer-cell killer

Apr 18, 2013

(Medical Xpress)—Researchers from the University of Alberta are abuzz after using fruit flies to find new ways of taking advantage of caffeine's lethal effects on cancer cells—results that could one day ...

Transformational fruit fly genome catalog completed

Feb 08, 2012

Scientists searching for the genomics version of the holy grail – more insight into predicting how an animal's genes affect physical or behavioral traits – now have a reference manual that should ...

Recommended for you

Battling superbugs with gene-editing system

17 hours ago

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

For legume plants, a new route from shoot to root

Sep 19, 2014

A new study shows that legume plants regulate their symbiotic relationship with soil bacteria by using cytokinins—signaling molecules— that are transmitted through the plant structure from leaves into ...

Controlling the transition between generations

Sep 18, 2014

Rafal Ciosk and his group at the FMI have identified an important regulator of the transition from germ cell to embryonic cell. LIN-41 prevents the premature onset of embryonic transcription in oocytes poised ...

User comments : 0