'Milking' brown recluse spiders for silk

March 10, 2014 by David Williard
'Milking' brown recluse spiders for silk

(Phys.org) —Rabbit, a brown-recluse spider, is fastened to the proverbial treadmill in Hannes Schniepp's Nanomaterials & Imaging lab. She is restrained but relaxed. Her spinnerets are churning out exquisite ribbons of silk. The strands are being captured on a creatively crafted spindle.

Among her sister spiders in the lab, Rabbit is a star. She, according to Sean Koebley '08, hands-down is the most reliable, most profuse when it comes to spinning. He handles her gently, secures her with soft strips of cotton; he is, after all, the one who named her—"Rabbit," the nickname for Maria ("my little Rabbit") in Ernest Hemingway's For Whom the Bell Tolls.

The is exquisite, even from the vantage of veteran material scientist Schniepp, assistant professor of applied science at William & Mary. Unlike that of other spiders, brown recluse silk essentially is flat, not cylindrical. Although two scientific papers had identified that ribbon-like characteristic, those papers had been written from "a biologist's point of view," Schniepp explained. He and his assistant Koebley, along with Fritz Vollrath, a professor in the department of zoology at Oxford, were the first to subject it to materials testing.

"Essentially we can 'milk' the spider for its silk under controlled conditions," Schniepp said. "That allows the silk to be placed, measured and tested for strength."

This video is not supported by your browser at this time.

The William & Mary team was able to measure the silk on an atomic force microscope in the applied science department. Their resulting paper, published in Advanced Materials, suggested a base width for the silk of 6-to-8 micrometers; its thickness is between 100-150 times less.

"The beautiful thing is that, despite having a completely different shape, the brown recluse silk is at least as strong, stiff and tough as all the other ," Schniepp said. "In addition, as a material, the brown recluse silk behaves very differently when it comes to adhesion."

In short, it is sticky. Schniepp compares it to packaging tape, only it is super strong (five-times tougher than Kevlar) and it is only a few molecular layers thin.

In the applied science lab, the scientists are very interested in how the protrusions they discovered on the silk—they named them "nano-papillae"—affect the stickiness and flexibility of the substance. The feature has not been observed in any other silk, they say.

Meanwhile, the routines continue. Rabbit and her sisters emit their threads; yes, they all are female; "virgins," at that, Schniepp explains, a precaution against laboratory infestation. The scientists dutifully calculate and record their observations, rarely giving themselves over to the potential magnitude of what is transpiring.

When they do, they talk about how their work paves the way to synthesizing brown recluse-inspired thin silk films in the future. They say application of such materials as a coating for implant materials is virtually a no-brainer. Beyond that, the resulting applications become industrial in scale: Synthetic silks have great potential to replace a variety of structural materials including plastics and even metals, such as steel.

Indeed, their article in Advanced Materials begins, "With oil reserves dwindling, the search for sustainable synthetic polymers 'fit for' the 21st century is accelerating."

They resist talking about, yet they potentially are on the leading edge of such a search.

Explore further: Most stretchable spider silk reported

More information: Schniepp, H. C., Koebley, S. R. and Vollrath, F. (2013), "Brown Recluse Spider's Nanometer Scale Ribbons of Stiff Extensible Silk." Adv. Mater., 25: 7028–7032. DOI: 10.1002/adma.201302740

Related Stories

Most stretchable spider silk reported

February 8, 2012

The egg sac silk of the cocoon stalk of the cave spider Meta menardi is the most stretchable egg sac silk yet tested, according to a study published Feb. 8 in the open access journal PLoS ONE.

Paralysis promises smart silk technology

September 19, 2013

(Phys.org) —Oxford University researchers have harnessed the natural defence mechanism of silkworms, which causes paralysis, in what is a major step towards the large-scale production of silks with tailor-made properties.

Spider's super-thin ribbons key to silk tech

October 10, 2013

(Phys.org) —The silk of a spider feared for its venomous bite could be the key to creating new super-sticky films and wafer-thin electronics and sensors for medical implants that are highly compatible with the human body.

Synthetic spider silk strong enough for a superhero

March 5, 2014

Spider silk of fantastical, superhero strength is finally speeding toward commercial reality—at least a synthetic version of it is. The material, which is five times stronger than steel, could be used in products from bulletproof ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.