First look at breast microbiota raises tantalizing questions

Mar 24, 2014

The female breast contains a unique population of microbes relative to the rest of the body, according to the first-ever study of the breast microbiome. That study sought to lay the groundwork for understanding how this bacterial community contributes to health and disease, says first author Camilla Urbaniak, a PhD student at the University of Western Ontario. The research was published ahead of print in Applied and Environmental Microbiology.

"Proteobacteria was the dominant phylum in healthy breast tissue," says Urbaniak, noting that it is found only in small proportions at other sites in the body. That may reflect the fact that breast tissue produces high concentrations of fatty acids, and these bacteria are fatty acid metabolizers. Proteobacteria is also the predominant phylum in human milk.

"The fact that beneficial bacteria, such as Lactobacillus and Bifidobacteria, were also detected makes us wonder whether their presence might be protective for both mother and child," says principal investigator Gregor Reid of the University of Western Ontario. Breast milk is one of the initial sources of gastrointestinal (GI) bacteria for newborns, and their GI microbiota are different if they are formula fed, says Urbaniak.

Conversely, Escherichia and Bacillus predominated in cancerous breasts.

"Strains of Escherichia have been shown to have mutagenic and carcinogenic activity in the gut and the bladder," says Urbaniak.

In the study, the investigators collected from 81 women. Ten of these had undergone , and their breast microbiota served as controls. The remaining women had had benign or cancerous tumors. The tissue collected from these women was taken from about five centimeters from the tumor, from what is known as "normal adjacent" tissue. Bacterial censuses were taken using a molecular technique known as 16S ribosomal sequencing, and with cultures.

Studies of the microbiome in other parts of the body, most notably the gastrointestinal tract, have shown that certain changes in bacterial populations can lead to a variety of ills, from obvious gastrointestinal conditions such as inflammatory bowel disease to those more unexpected, such as diabetes, obesity, cancer and even neurological conditions.

"Future studies will examine how this breast microbiome is established, why no infections accompany colonization, despite the fact that some of these bacteria cause infections elsewhere in the body, what impact these organisms have on the host, and whether external factors such as diet, antibiotics, and illness affect this , and what consequences that has for women and their offspring," says Urbaniak.

The manuscript can be found online at http://aem.asm.org/content/early/2014/03/03/AEM.00242-14.full.pdf+html. The final version of the article is scheduled for the May 2014 issue of Applied and Environmental Microbiology.

Explore further: More than just bacteria: The importance of microbial diversity in gut health and disease

add to favorites email to friend print save as pdf

Related Stories

Human breast milk microbiome changes over time

Jan 28, 2013

(HealthDay)—The microbiome of breast milk is influenced by many factors, including maternal weight and how the baby was delivered, according to research published in the American Journal of Clinical Nu ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

2 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.