A breakthrough in creating invisibility cloaks, stealth technology

March 31, 2014
Assistant Professor Chanda works with students in his lab at the UCF NanoScience Technology Center. Credit: UCF

Controlling and bending light around an object so it appears invisible to the naked eye is the theory behind fictional invisibility cloaks.

It may seem easy in Hollywood movies, but is hard to create in real life because no material in nature has the properties necessary to bend light in such a way. Scientists have managed to create artificial nanostructures that can do the job, called metamaterials. But the challenge has been making enough of the material to turn science fiction into a practical reality.

The work of Debashis Chanda at the University of Central Florida, however, may have just cracked that barrier. The cover story in the March edition of the journal Advanced Optical Materials, explains how Chanda and fellow optical and nanotech experts were able to develop a larger swath of multilayer 3-D metamaterial operating in the visible spectral range. They accomplished this feat by using nanotransfer printing, which can potentially be engineered to modify surrounding refractive index needed for controlling propagation of light.

"Such large-area fabrication of metamaterials following a simple printing technique will enable realization of novel devices based on engineered optical responses at the nanoscale," said Chanda, an assistant professor at UCF.

The nanotransfer creates metal/dielectric composite films, which are stacked together in a 3-D architecture with nanoscale patterns for operation in the visible spectral range. Control of electromagnetic resonances over the 3-D space by structural manipulation allows precise control over propagation of light. Following this technique, larger pieces of this special material can be created, which were previously limited to micron-scale size.

By improving the technique, the team hopes to be able to create larger pieces of the material with engineered optical properties, which would make it practical to produce for real-life device applications. For example, the team could develop large-area metamaterial absorbers, which would enable fighter jets to remain invisible from detection systems.

Explore further: Tiny spheres of silicon can control magnetic side of light, paving way to novel optical devices

Related Stories

Organic chemistry: Leading light waves astray

June 4, 2013

The development of structured synthetic materials with unusual electromagnetic properties, so-called metamaterials, promises to provide access to special physical effects of great technological interest. Metamaterials have ...

New material gives visible light an infinite wavelength

October 13, 2013

Researchers from the FOM Institute AMOLF and the University of Pennsylvania have fabricated a material which gives visible light a nearly infinite wavelength. The new metamaterial is made by stacking silver and silicon nitride ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 31, 2014
A "practical" real life cloak isn't a material that is only useful over a ultra-narrow frequency range.
Which characterizes the current state of the art. Until broad range cloaking is a reality, this technology will only be useful in highly controlled settings (if it proves to be useful at all) and definitely NOT useful in the "real world".

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.