New bioinformatics tool to visualize transcriptomes

Mar 09, 2014

ZENBU, a new, freely available bioinformatics tool developed at the RIKEN Center for Life Science Technology in Japan, enables researchers to quickly and easily integrate, visualize and compare large amounts of genomic information resulting from large-scale, next-generation sequencing experiments.

Next-generation sequencing has revolutionized functional genomics, with protocols such as RNA-seq, ChIP-seq and CAGE being used widely around the world. The power of these techniques lies in the fact that they enable the genome-wide discovery of transcripts and transcription factor binding sites, which is key to understanding the molecular mechanisms underlying cell function in healthy and diseased individuals and the development of diseases like cancer. The integration of data from multiple experiments is an important aspect of the interpretation of results, however the growing number of datasets generated makes a thorough comparison and analysis of results cumbersome.

In a report published today in the journal Nature Biotechnology, Jessica Severin and colleagues describe the development of ZENBU, a tool that combines a genome browser with data analysis and a linked expression view, to facilitate the interactive visualization and comparison of results from large numbers of datasets. The key difference between ZENBU and previous tools is the ability to dynamically combine thousands of experimental datasets in an interactive visualization environment through linked genome location and expression signal views. This allows scientists to compare their own experiments against the over 6000 ENCODE and FANTOM consortium datasets currently loaded into the system, thus enabling them to discover new and interesting biological mechanisms. The tool is designed to integrate millions of experiments/datasets of any kind (RNA-seq, ChIP-seq or CAGE), hence its name: zenbu means 'all' or 'everything' in Japanese.

ZENBU is freely available for use on the web and for installation in individual laboratories, and all ZENBU sites are connected and continuously share data. The tool can be accessed or downloaded from http://fantom.gsc.riken.jp/zenbu/.

"By distributing the data and servers we encourage scientists to load and share their published data to help build a comprehensive resource to further advance research efforts and collaborations around the world," explain the authors.

Explore further: How an RNA gene silences a whole chromosome

More information: Jessica Severin, Marina Lizio, Jayson Harshbarger, Hideya Kawaji, Carsten O Daub, Yoshihide Hayashizaki, the FANTOM consortium, Nicolas Bertin, and Alistair RR Forrest. "Interactive visualization and analysis of large-scale NGS data-sets using ZENBU". Nature Biotechnology, dx.doi.org/10.1038/nbt.2840

Related Stories

Small non-coding RNAs could be warning signs of cancer

Feb 17, 2014

Small non-coding RNAs can be used to predict if individuals have breast cancer, conclude researchers who contribute to The Cancer Genome Atlas project. The results, which are published in EMBO Reports, indicate that differ ...

Recommended for you

How an RNA gene silences a whole chromosome

23 hours ago

Researchers at Caltech have discovered how an abundant class of RNA genes, called long non-coding RNAs (lncRNAs, pronounced link RNAs) can regulate key genes. By studying an important lncRNA, called Xist, ...

Single cells seen in unprecedented detail

Apr 27, 2015

Researchers have developed a large-scale sequencing technique called Genome and Transcriptome Sequencing (G&T-seq) that reveals, simultaneously, the unique genome sequence of a single cell and the activity ...

York's anti-malarial plant given Chinese approval

Apr 24, 2015

A new hybrid plant used in anti-malarial drug production, developed by scientists at the University of York's Centre for Novel Agricultural Products (CNAP), is now registered as a new variety in China.

The appeal of being anti-GMO

Apr 24, 2015

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.