New battery technology employs multifunctional materials

Mar 26, 2014 by Diane Kukich
Researchers at the University of Delaware have discovered that fragmented carbon nanotube films can serve as adhesive conductors in lithium-ion batteries.

Lithium-ion batteries power a vast array of modern devices, from cell phones, laptops, and laser pointers to thermometers, hearing aids, and pacemakers. The electrodes in these batteries typically comprise three components: active materials, conductive additives, and binders.

Now, a team of researchers at the University of Delaware has discovered a "sticky" conductive material that may eliminate the need for binders.

"The problem with the current technology is that the binders impair the electrochemical performance of the battery because of their insulating properties," says Bingqing Wei, professor of . "Furthermore, the used to mix the binders and conductive materials together not only add to the expense of the final product, but also are toxic to humans."

Carbon nanotubes to the rescue

Wei and doctoral student Zeyuan Cao recently discovered that fragmented carbon nanotube macrofilms (FCNT) can serve as adhesive conductors, combining two functions in one material. Their work is reported in ACS Nano, a specialty publication of the American Chemical Society, and they have filed a patent application on the discovery.

Bingqing Wei leads a research team that has discovered that fragmented carbon nanotube films can serve as adhesive conductors in lithium-ion batteries.

Wei explains that FCNTs are web-like meshes with "tentacles" that are coupled with active lithium-based cathode and anode materials. They are then assembled using simple ultrasound processing. The process employs no organic solvents.

"We've found that the adhesive FCNT conductors actually have higher adhesion strength than PVDF, the binder traditionally used in lithium-ion battery manufacturing," he says. "We've also demonstrated that these composite electrodes exhibit higher electrical conductivity than traditional materials, and we've achieved these benefits in a low-cost green fabrication process that replaces toxic organic solvents with just water and alcohol."

"There is a wide market for ," he adds, "and we see great potential for the use of this technology in vehicle applications, where quick charging and discharging are required."

The approach strategy could also be employed for electrode preparation for other such as electrochemical capacitors.

Explore further: The ultra-high volumetric energy density lithium-sulfur battery

add to favorites email to friend print save as pdf

Related Stories

Nanoparticles improve lithium battery electrodes

Nov 01, 2012

(Phys.org)—Materials scientists have developed a simple, robust way to fabricate carbon-free and polymer-free, lightweight colloidal films for lithium-ion battery electrodes, which could greatly improve ...

Recommended for you

Light pulses control graphene's electrical behavior

6 hours ago

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

hemitite
not rated yet Mar 26, 2014
Sounds like nano-Velcro. Great idea!