New battery technology employs multifunctional materials

Mar 26, 2014 by Diane Kukich
Researchers at the University of Delaware have discovered that fragmented carbon nanotube films can serve as adhesive conductors in lithium-ion batteries.

Lithium-ion batteries power a vast array of modern devices, from cell phones, laptops, and laser pointers to thermometers, hearing aids, and pacemakers. The electrodes in these batteries typically comprise three components: active materials, conductive additives, and binders.

Now, a team of researchers at the University of Delaware has discovered a "sticky" conductive material that may eliminate the need for binders.

"The problem with the current technology is that the binders impair the electrochemical performance of the battery because of their insulating properties," says Bingqing Wei, professor of . "Furthermore, the used to mix the binders and conductive materials together not only add to the expense of the final product, but also are toxic to humans."

Carbon nanotubes to the rescue

Wei and doctoral student Zeyuan Cao recently discovered that fragmented carbon nanotube macrofilms (FCNT) can serve as adhesive conductors, combining two functions in one material. Their work is reported in ACS Nano, a specialty publication of the American Chemical Society, and they have filed a patent application on the discovery.

Bingqing Wei leads a research team that has discovered that fragmented carbon nanotube films can serve as adhesive conductors in lithium-ion batteries.

Wei explains that FCNTs are web-like meshes with "tentacles" that are coupled with active lithium-based cathode and anode materials. They are then assembled using simple ultrasound processing. The process employs no organic solvents.

"We've found that the adhesive FCNT conductors actually have higher adhesion strength than PVDF, the binder traditionally used in lithium-ion battery manufacturing," he says. "We've also demonstrated that these composite electrodes exhibit higher electrical conductivity than traditional materials, and we've achieved these benefits in a low-cost green fabrication process that replaces toxic organic solvents with just water and alcohol."

"There is a wide market for ," he adds, "and we see great potential for the use of this technology in vehicle applications, where quick charging and discharging are required."

The approach strategy could also be employed for electrode preparation for other such as electrochemical capacitors.

Explore further: Tiny wires could provide a big energy boost

Related Stories

Nanoparticles improve lithium battery electrodes

Nov 01, 2012

(Phys.org)—Materials scientists have developed a simple, robust way to fabricate carbon-free and polymer-free, lightweight colloidal films for lithium-ion battery electrodes, which could greatly improve ...

Recommended for you

Tiny wires could provide a big energy boost

11 hours ago

Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough ...

Graphene sheets enable ultrasound transmitters

12 hours ago

University of California, Berkeley, physicists have used graphene to build lightweight ultrasonic loudspeakers and microphones, enabling people to mimic bats or dolphins' ability to use sound to communicate ...

Project uses crowd computing to improve water filtration

Jul 06, 2015

Nearly 800 million people worldwide don't have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. ...

Engineering the world's smallest nanocrystal

Jul 06, 2015

In the natural world, proteins use the process of biomineralization to incorporate metallic elements into tissues, using it to create diverse materials such as seashells, teeth, and bones. However, the way ...

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

hemitite
not rated yet Mar 26, 2014
Sounds like nano-Velcro. Great idea!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.